|   | 
Details
   web
Records
Author (down) Vitali, A.; Lana, E.; Amadori, M.; Bernabucci, U.; Nardone, A.; Lacetera, N.
Title Analysis of factors associated with mortality of heavy slaughter pigs during transport and lairage Type Journal Article
Year 2014 Publication Journal of Animal Science Abbreviated Journal J. Anim. Sci.
Volume 92 Issue 11 Pages 5134-5141
Keywords Abattoirs/*statistics & numerical data; Animals; *Data Interpretation, Statistical; Humidity/adverse effects; Light/adverse effects; *Mortality; Retrospective Studies; Seasons; Swine/*physiology; Temperature; Time Factors; Transportation/*statistics & numerical data; lairage; mortality; pigs; temperature-humidity index; transport
Abstract The study was based on data collected during 5 yr (2003-2007) and was aimed at assessing the effects of the month, slaughter house of destination (differing for stocking density, openings, brightness, and cooling device types), length of the journey, and temperature-humidity index (THI) on mortality of heavy slaughter pigs (approximately 160 kg live weight) during transport and lairage. Data were obtained from 24,098 journeys and 3,676,153 pigs transported from 1,618 farms to 3 slaughter houses. Individual shipments were the unit of observation. The terms dead on arrival (DOA) and dead in pen (DIP) refer to pigs that died during transport and in lairage at the abattoir before slaughtering, respectively. These 2 variables were assessed as the dependent counts in separate univariate Poisson regressions. The independent variables assessed univariately in each set of regressions were month of shipment, slaughter house of destination, time traveled, and each combination of the month with the time traveled. Two separate piecewise regressions were done. One used DOA counts within THI levels over pigs transported as a dependent ratio and the second used DIP counts within THI levels over pigs from a transport kept in lairage as a dependent ratio. The THI was the sole independent variable in each case. The month with the greatest frequency of deaths was July with a risk ratio of 1.22 (confidence interval: 1.06-1.36; P < 0.05) and 1.27 (confidence interval: 1.06-1.51; P < 0.05) for DOA and DIP, respectively. The lower mortality risk ratios for DOA and DIP were recorded for January and March (P < 0.05). The aggregated data of the summer (June, July, and August) versus non-summer (January, March, September, and November) months showed a greater risk of pigs dying during the hot season when considering both transport and lairage (P < 0.05). The mortality risk ratio of DIP was lower at the slaughter house with the lowest stocking density (0.64 m(2)/100 kg live weight), large open windows on the roof and sidewalls, low brightness (40 lx) lights, and high-pressure sprinklers as cooling devices. The mortality risk ratio of DOA increased significantly for journeys longer than 2 h, whereas no relationship was found between length of transport and DIP. The piecewise analysis pointed out that 78.5 and 73.6 THI were the thresholds above which the mortality rate increased significantly for DOA and DIP, respectively. These results may help the pig industry to improve the welfare of heavy slaughter pigs during transport and lairage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1525-3163 (Electronic) 0021-8812 (Linking) ISBN Medium Article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4641
Permanent link to this record
 

 
Author (down) Strauss, F.; Moltchanova, E.; Schmid, E.
Title Spatially explicit modeling of long-term drought impacts on crop production in Austria Type Journal Article
Year 2013 Publication American Journal of Climate Change Abbreviated Journal American Journal of Climate Change
Volume 2 Issue 3 Pages 1-11
Keywords Long-Term Drought Modeling; Dry Day Index; Biophysical Impacts; Spatial Variability; EPIC; Austria
Abstract Droughts have serious and widespread impacts on crop production with substantial economic losses. The frequency and severity of drought events may increase in the future due to climate change. We have developed three meteorological drought scenarios for Austria in the period 2008-2040. The scenarios are defined based on a dry day index which is combined with bootstrapping from an observed daily weather dataset of the period 1975-2007. The severity of long-term drought scenarios is characterized by lower annual and seasonal precipitation amounts as well as more sig- nificant temperature increases compared to the observations. The long-term impacts of the drought scenarios on Aus- trian crop production have been analyzed with the biophysical process model EPIC (Environmental Policy Integrated Climate). Our simulation outputs show that—for areas with historical mean annual precipitation sums below 850 mm— already slight increases in dryness result in significantly lower crop yields i.e. depending on the drought severity, be- tween 0.6% and 0.9% decreases in mean annual dry matter crop yields per 1.0% decrease in mean annual precipitation sums. The EPIC results of more severe droughts show that spring and summer precipitation may become a limiting factor in crop production even in regions with historical abundant precipitation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2167-9495 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4507
Permanent link to this record
 

 
Author (down) Siebert, S.; Ewert, F.; Rezaei, E.E.; Kage, H.; Grass, R.
Title Impact of heat stress on crop yield-on the importance of considering canopy temperature Type Journal Article
Year 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 9 Issue 4 Pages
Keywords heat stress; crop yield; temperature; soil moisture; modelling; wheat; rye; harvest index; wheat yields; climate-change; winter-wheat; grain number; extreme heat; maize; variability; irrigation; drought
Abstract Increasing crop productivity while simultaneously reducing the environmental footprint of crop production is considered a major challenge for the coming decades. Even short episodes of heat stress can reduce crop yield considerably causing low resource use efficiency. Studies on the impact of heat stress on crop yields over larger regions generally rely on temperatures measured by standard weather stations at 2 m height. Canopy temperatures measured in this study in field plots of rye were up to 7 degrees C higher than air temperature measured at typical weather station height with the differences in temperatures controlled by soil moisture contents. Relationships between heat stress and grain number derived from controlled environment studies were only confirmed under field conditions when canopy temperature was used to calculate stress thermal time. By using hourly mean temperatures measured by 78 weather stations located across Germany for the period 1994-2009 it is estimated, that mean yield declines in wheat due to heat stress during flowering were 0.7% when temperatures are measured at 2 m height, but yield declines increase to 22% for temperatures measured at the ground. These results suggest that canopy temperature should be simulated or estimated to reduce uncertainty in assessing heat stress impacts on crop yield.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4814
Permanent link to this record
 

 
Author (down) Semenov, M.A.; Stratonovitch, P.; Alghabari, F.; Gooding, M.J.
Title Adapting wheat in Europe for climate change Type Journal Article
Year 2014 Publication Journal of Cereal Science Abbreviated Journal J. Ceareal Sci.
Volume 59 Issue 3 Pages 245-256
Keywords A, maximum area of flag leaf area; ABA, abscisic acid; CV, coefficient of variation; Crop improvement; Crop modelling; FC, field capacity; GMT, Greenwich mean time; GS, growth stage; Gf, grain filling duration; HI, harvest index; HSP, heat shock protein; Heat and drought tolerance; Impact assessment; LAI, leaf area index; Ph, phylochron; Pp, photoperiod response; Ru, root water uptake; S, duration of leaf senescence; SF, drought stress factor; Sirius; Wheat ideotype
Abstract Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0733-5210 ISBN Medium Review
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4543
Permanent link to this record
 

 
Author (down) Pasqui, M.; Di Giuseppe, E.
Title Climate change, future warming, and adaptation in Europe Type Journal Article
Year 2019 Publication Animal Frontiers Abbreviated Journal Animal Frontiers
Volume 9 Issue 1 Pages 6-11
Keywords heat waves; impacts; perception; vulnerability; temperature-humidity index; extremes indexes
Abstract In recent decades, the increased temperatures reported in Europe and in the Mediterranean basin represent one of the clearest footprints of climate change along with increased frequency of heat waves. These climate modifications put the environment and human activities under strong pressure with a resulting need for designing new adaptation and mitigation strategies. The climate change challenge is unprecedented for humanity and is recognized as a priority topic for future research. Changes in the way we think and behave are critical challenges at the global and regional levels.
Address 2020-06-08
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5236
Permanent link to this record