toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Siebert, S.; Webber, H.; Zhao, G.; Ewert, F.; Siebert, S.; Webber, H.; Zhao, G.; Ewert, F. doi  openurl
  Title Heat stress is overestimated in climate impact studies for irrigated agriculture Type Journal Article
  Year 2017 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 12 Issue 5 Pages 054023  
  Keywords heat stress; climate change impact assessment; irrigation; canopy temperature; CANOPY TEMPERATURE; WINTER-WHEAT; WATER-STRESS; CROP YIELDS; GROWTH; MAIZE; DROUGHT; UNCERTAINTY; ENVIRONMENT; PHENOLOGY  
  Abstract (up) Climate change will increase the number and severity of heat waves, and is expected to negatively affect crop yields. Here we show for wheat and maize across Europe that heat stress is considerably reduced by irrigation due to surface cooling for both current and projected future climate. We demonstrate that crop heat stress impact assessments should be based on canopy temperature because simulations with air temperatures measured at standard weather stations cannot reproduce differences in crop heat stress between irrigated and rainfed conditions. Crop heat stress was overestimated on irrigated land when air temperature was used with errors becoming larger with projected climate change. Corresponding errors in mean crop yield calculated across Europe for baseline climate 1984-2013 of 0.2 Mg yr(-1) (2%) and 0.6 Mg yr(-1) (5%) for irrigated winter wheat and irrigated grain maize, respectively, would increase to up to 1.5 Mg yr (1) (16%) for irrigated winter wheat and 4.1 Mg yr (1) (39%) for irrigated grain maize, depending on the climate change projection/GCM combination considered. We conclude that climate change impact assessments for crop heat stress need to account explicitly for the impact of irrigation.  
  Address 2017-06-22  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5035  
Permanent link to this record
 

 
Author Hlavinka, P.; Kersebaum, K.C.; Dubrovský, M.; Fischer, M.; Pohanková, E.; Balek, J.; Žalud, Z.; Trnka, M. url  doi
openurl 
  Title Water balance, drought stress and yields for rainfed field crop rotations under present and future conditions in the Czech Republic Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 175-192  
  Keywords crop growth model; evapotranspiration; soil; climate change; climate-change scenarios; spring barley; wheat production; winter-wheat; model; impacts; europe; uncertainties; simulation; strategies  
  Abstract (up) Continuous crop rotation modeling is a prospective trend that, compared to 1-crop or discrete year-by-year calculations, can provide more accurate results that are closer to real conditions. The goal of this study was to compare the water balance and yields estimated by the HERMES crop rotation model for present and future climatic conditions in the Czech Republic. Three locations were selected, representing important agricultural regions with different climatic conditions. Crop rotation (spring barley, silage maize, winter wheat, winter rape) was simulated from 1981-2080. The 1981-2010 period was covered by measured meteorological data, while 2011-2080 was represented by a transient synthetic weather series from the weather generator M& Rfi. The data were based on 5 circulation models, representing an ensemble of 18 CMIP3 global circulation models, to preserve much of the uncertainty of the original ensemble. Two types of crop management were compared, and the influences of soil quality, increasing atmospheric CO2 and adaptation measures (i. e. sowing date changes) were also considered. Results suggest that under a ‘dry’ scenario (such as GFCM21), C-3 crops in drier regions will be devastated for a significant number of seasons. Negative impacts are likely even on premium-quality soils regardless of flexible sowing dates and accounting for increasing CO2 concentrations. Moreover, in dry conditions, the use of crop rotations with catch crops may have negative impacts, exacerbating the soil water deficit for subsequent crops. This approach is a promising method for determining how various management strategies and crop rotations can affect yields as well as water, carbon and nitrogen cycling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x 1616-1572 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4663  
Permanent link to this record
 

 
Author Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; Reynolds, M.P.; Alderman, P.D.; Prasad, P.V.V.; Aggarwal, P.K.; Anothai, J.; Basso, B.; Biernath, C.; Challinor, A.J.; De Sanctis, G.; Doltra, J.; Fereres, E.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L.A.; Izaurralde, R.C.; Jabloun, M.; Jones, C.D.; Kersebaum, K.C.; Koehler, A.-K.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Palosuo, T.; Priesack, E.; Eyshi Rezaei, E.; Ruane, A.C.; Semenov, M.A.; Shcherbak, I.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P.J.; Waha, K.; Wang, E.; Wallach, D.; Wolf, J.; Zhao, Z.; Zhu, Y. url  doi
openurl 
  Title Rising temperatures reduce global wheat production Type Journal Article
  Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change  
  Volume 5 Issue 2 Pages 143-147  
  Keywords climate-change; spring wheat; dryland wheat; yield; growth; drought; heat; CO2; agriculture; adaptation  
  Abstract (up) Crop models are essential tools for assessing the threat of climate change to local and global food production1. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature2. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 °C to 32 °C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each °C of further temperature increase and become more variable over space and time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1758-678x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4550  
Permanent link to this record
 

 
Author Dumont, B.; Vancutsem, F.; Seutin, B.; Bodson, B.; Destain, J.-P.; Destain, M.-F. url  openurl
  Title Simulation de la croissance du blé à l’aide de modèles écophysiologiques: Synthèse bibliographique des méthodes, potentialités et limitations Type Journal Article
  Year 2012 Publication Biotechnologie, Agronomie, Société et Environnement Abbreviated Journal Biotechnologie, Agronomie, Société et Environnement  
  Volume 163 Issue Pages 376-386  
  Keywords crops; growth; soil; Triticum; wheats; calibration; optimization methods  
  Abstract (up) Crop models describe the growth and development of a crop interacting with its surrounding agro-environmental conditions (soil, climate and the close conditions of the plant). However, the implementation of such models remains difficult because of the high number of explanatory variables and parameters. It often happens that important discrepancies appear between measured and simulated values. This article aims to highlight the different sources of uncertainty related to the use of crop models, as well as the actual methods that allow a compensation for or, at least, a consideration of these sources of error during analysis of the model results. This article presents a literature review, which firstly synthesises the general mathematical structure of crop models. The main criteria for evaluating crop models are then described. Finally, several methods used for improving models are given. Parameter estimation methods, including frequentist and Bayesian approaches, are presented and data assimilation methods are reviewed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language French Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4584  
Permanent link to this record
 

 
Author Webber, H.; Ewert, F.; Kimball, B.A.; Siebert, S.; White, J.W.; Wall, G.W.; Ottman, M.J.; Trawally, D.N.A.; Gaiser, T. url  doi
openurl 
  Title Simulating canopy temperature for modelling heat stress in cereals Type Journal Article
  Year 2016 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 77 Issue Pages 143-155  
  Keywords canopy temperature; heat stress; cereals; crop models; profile relationships; crop production; climate-change; spring wheat; field plots; growth; maize; water; yields; variability  
  Abstract (up) Crop models must be improved to account for the effects of heat stress events on crop yields. To date, most approaches in crop models use air temperature to define heat stress intensity as the cumulative sum of thermal times (TT) above a high temperature threshold during a sensitive period for yield formation. However, observational evidence indicates that crop canopy temperature better explains yield reductions associated with high temperature events than air temperature does. This study presents a canopy level energy balance using Monin ObukhovSimilarity Theory (MOST) with simplifications about the canopy resistance that render it suitable for application in crop models and other models of the plant environment. The model is evaluated for a uniform irrigated wheat canopy in Arizona and rainfed maize in Burkina Faso. No single variable regression relationships for key explanatory variables were found that were consistent across sowing dates to explain the deviation of canopy temperature from air temperature. Finally, thermal times determined with simulated canopy temperatures were able to reproduce thermal times calculated with observed canopy temperature, whereas those determined with air temperatures were not. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4730  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: