|   | 
Details
   web
Records
Author Montesino-San Martín, M.; Olesen, J.E.; Porter, J.R.
Title A genotype, environment and management (GxExM) analysis of adaptation in winter wheat to climate change in Denmark Type Journal Article
Year 2014 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 187 Issue Pages 1-13
Keywords Winter wheat; Climate change; Adaptation; Uncertainty; Europe; food security; model hadgem1; physical-properties; regional climate; change impacts; field-scale; land-use; yield; nitrogen; variability
Abstract Wheat yields in Europe have shown stagnating trends during the last two decades, partly attributed to climate change. Such developments challenge the needs for increased production, in particular at higher latitudes, to meet increasing global demands and expected productivity reductions at lower latitudes. Climate change projections from three General Circulation Models or GCMs (UKMO-HadGEM1, INM-GM3.0 and CSIRO-Mk3.1) for the A1FI SIZES emission scenario for 2000 to 2100 were downscaled at a northern latitude location (Foulum, Denmark) using LARS-WG5.3. The scenarios accounted for changes in temperature, precipitation and atmospheric CO2 concentration. In addition, three temperature-variability scenarios were included assuming different levels of decreased temperature variability in winter and increased in summer. Crop yield was simulated for the different climate change scenarios by a calibrated version of AFRCWHEAT2 to model several combinations of genotypes (varying in crop growth, development and tolerance to water and nitrogen scarcity) and management (sowing dates and nitrogen fertilization rate). The simulations showed a slight improvement of grain yields (0.3-1.2 Mg ha(-1)) in the medium-term (2030-2050), but not enough to cope with expected increases in demand for food and feed. Optimum management added up to 1.8 Mg ha(-1). Genetic modifications regarding winter wheat crop development exhibit the greatest sensitivity to climate and larger potential for improvement (+3.8 Mg ha(-1)). The results consistently points towards need for cultivars with a longer reproductive phases (2.9-7.5% per 1 degrees C) and lower photoperiod sensitivities. Due to the positive synergies between several genotypic characteristics, multiple-target breeding programmes would be necessary, possibly assisted by model-based assessments of optimal phenotypic characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4630
Permanent link to this record
 

 
Author Rötter, R.P.; Höhn, J.G.; Fronzek, S.
Title Projections of climate change impacts on crop production – a global and a Nordic perspective Type Journal Article
Year 2012 Publication Acta Agriculturae Scandinavica, Section A – Animal Science Abbreviated Journal Acta Agriculturae Scandinavica, Section A – Animal Science
Volume 62 Issue Pages 166-180
Keywords climate change; impact projection; food production; uncertainty; crop simulation model; food security; integrated assessment; winter-wheat; scenarios; agriculture; adaptation; temperature; models; yield; scale
Abstract Global climate is changing and food production is very sensitive to weather and climate variations. Global assessments of climate change impacts on food production have been made since the early 1990s, initially with little attention to the uncertainties involved. Although there has been abundant analysis of uncertainties in future greenhouse gas emissions and their impacts on the climate system, uncertainties related to the way climate change projections are scaled down as appropriate for different analyses and in modelling crop responses to climate change, have been neglected. This review paper mainly addresses uncertainties in crop impact modelling and possibilities to reduce them. We specifically aim to (i) show ranges of projected climate change-induced impacts on crop yields, (ii) give recommendations on use of emission scenarios, climate models, regionalization and ensemble crop model simulations for different purposes and (iii) discuss improvements and a few known unknowns’ affecting crop impact projections.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0906-4702, 1651-1972 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4591
Permanent link to this record
 

 
Author Zhen, L.; Deng, X.; Wei, Y.; Jiang, Q.; Lin, Y.; Helming, K.; Wang, C.; König, H.J.; Hu, J.
Title Future land use and food security scenarios for the Guyuan district of remote western China Type Journal Article
Year 2014 Publication iForest Abbreviated Journal iForest
Volume 7 Issue 6 Pages 372-384
Keywords land-use patterns; scenario analysis; dynamics of land systems modeling; food security; guyuan district; north-central china; cultivated land; dynamics; conversion; policy
Abstract Government policy is a major human factor that causes changes in land use. Decisions on land management and land-use planning, as well as the analysis and quantification of policy consequences, may greatly benefit from the simulation of the dynamics of land-use systems. In the present study, we predicted land-use changes and their potential impacts on food security in the environmentally fragile Guyuan District, Ningxia Hui Autonomous Region (north-central China), under the influence of a program to convert sloping agricultural land to conservation uses. Baseline and conservation policy scenarios (2005 to 2020) were developed based on input from local stakeholders and expert knowledge. For the baseline and conservation policies, we formulated high-, moderate-, and low-growth scenarios, analyzed the driving mechanisms responsible for the land-use dynamics, and then applied a previously developed “dynamics of land systems” model to simulate changes in land uses based on the driving mechanisms. We found that spatially explicit policies can promote the conversion of land to more sustainable uses; however, decreasing the amount of agricultural and urban land and increasing grassland and forest cover will increase the risk of grain shortages, and the effect will be more severe under the conservation and high- growth scenarios than under the baseline and low-growth scenarios. The Guyuan case study suggests that, during the next decade, important trade-offs between environmental conservation and food security will inevitably occur. Future land-use decisions should carefully consider the balance between land resource conservation, agricultural production, and urban expansion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1971-7458 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4547
Permanent link to this record
 

 
Author Kahiluoto, H.; Kaseva, J.; Hakala, K.; Himanen, S.J.; Jauhiainen, L.; Rötter, R.P.; Salo, T.; Trnka, M.
Title Cultivating resilience by empirically revealing response diversity Type Journal Article
Year 2014 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change
Volume 25 Issue Pages 186-193
Keywords generic approach; climate change; food security; agrifood systems; cultivars; adaptive capacity; climate-change; functional diversity; plant-communities; genetic diversity; biodiversity; ecosystems; management; redundancy; evenness; weather
Abstract Intensified climate and market turbulence requires resilience to a multitude of changes. Diversity reduces the sensitivity to disturbance and fosters the capacity to adapt to various future scenarios. What really matters is diversity of responses. Despite appeals to manage resilience, conceptual developments have not yet yielded a break-through in empirical applications. Here, we present an approach to empirically reveal the ‘response diversity’: the factors of change that are critical to a system are identified, and the response diversity is determined based on the documented component responses to these factors. We illustrate this approach and its added value using an example of securing food supply in the face of climate variability and change. This example demonstrates that quantifying response diversity allows for a new perspective: despite continued increase in cultivar diversity of barley, the diversity in responses to weather declined during the last decade in the regions where most of the barley is grown in Finland. This was due to greater homogeneity in responses among new cultivars than among older ones. Such a decline in the response diversity indicates increased vulnerability and reduced resilience. The assessment serves adaptive management in the face of both ecological and socioeconomic drivers. Supplier diversity in the food retail industry in order to secure affordable food in spite of global price volatility could represent another application. The approach is, indeed, applicable to any system for which it is possible to adopt empirical information regarding the response by its components to the critical factors of variability and change. Targeting diversification in response to critical change brings efficiency into diversity. We propose the generic procedure that is demonstrated in this study as a means to efficiently enhance resilience at multiple levels of agrifood systems and beyond. (C) 2014 The Authors. Published by Elsevier Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-3780 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4525
Permanent link to this record
 

 
Author Graef, F.; Sieber, S.; Mutabazi, K.; Asch, F.; Biesalski, H.K.; Bitegeko, J.; Bokelmann, W.; Bruentrup, M.; Dietrich, O.; Elly, N.; Fasse, A.; Germer, J.U.; Grote, U.; Herrmann, L.; Herrmann, R.; Hoffmann, H.; Kahimba, F.C.; Kaufmann, B.; Kersebaum, K.-C.; Kilembe, C.; Kimaro, A.; Kinabo, J.; König, B.; König, H.; Lana, M.; Levy, C.; Lyimo-Macha, J.; Makoko, B.; Mazoko, G.; Mbaga, S.H.; Mbogoro, W.; Milling, H.; Mtambo, K.; Mueller, J.; Mueller, C.; Mueller, K.; Nkonja, E.; Reif, C.; Ringler, C.; Ruvuga, S.; Schaefer, M.; Sikira, A.; Silayo, V.; Stahr, K.; Swai, E.; Tumbo, S.; Uckert, G.
Title Framework for participatory food security research in rural food value chains Type Journal Article
Year 2014 Publication Global Food Security Abbreviated Journal Global Food Security
Volume 3 Issue 1 Pages 8-15
Keywords food security; food value chain; action research; tanzania; research framework
Abstract Enhancing food security for poor and vulnerable people requires adapting rural food systems to various driving factors. Food security-related research should apply participatory action research that considers the entire food value chain to ensure sustained success. This article presents a research framework that focusses on determining, prioritising, testing, adapting and disseminating food securing upgrading strategies across the multiple components of rural food value chains. These include natural resources, Food production, processing, markets, consumption and waste management. Scientists and policy makers jointly use tools developed for assessing potentials for enhancing regional food security at multiple spatial and temporal scales. The research is being conducted in Tanzania as a case study for Sub-Saharan countries and is done in close collaboration with local, regional and national stakeholders, encompassing all activities across all different food sectors. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-9124 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM Approved no
Call Number MA @ admin @ Serial 4523
Permanent link to this record