toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mansouri, M.; Destain, M.-F. url  doi
openurl 
  Title Predicting biomass and grain protein content using Bayesian methods Type Journal Article
  Year 2015 Publication Stochastic Environmental Research and Risk Assessment Abbreviated Journal Stoch. Environ. Res. Risk Assess.  
  Volume (down) 29 Issue 4 Pages 1167-1177  
  Keywords crop model; particle filter; prediction; ensemble kalman filter; parameter-estimation; particle filters; decision-support; state estimation; model; nitrogen; navigation; tracking; systems  
  Abstract This paper deals with the problem of predicting biomass and grain protein content using improved particle filtering (IPF) based on minimizing the Kullback-Leibler divergence. The performances of IPF are compared with those of the conventional particle filtering (PF) in two comparative studies. In the first one, we apply IPF and PF at a simple dynamic crop model with the aim to predict a single state variable, namely the winter wheat biomass, and to estimate several model parameters. In the second study, the proposed IPF and the PF are applied to a complex crop model (AZODYN) to predict a winter-wheat quality criterion, namely the grain protein content. The results of both comparative studies reveal that the IPF method provides a better estimation accuracy than the PF method. The benefit of the IPF method lies in its ability to provide accuracy related advantages over the PF method since, unlike the PF which depends on the choice of the sampling distribution used to estimate the posterior distribution, the IPF yields an optimum choice of this sampling distribution, which also utilizes the observed data. The performance of the proposed method is evaluated in terms of estimation accuracy, root mean square error, mean absolute error and execution times.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3240 1436-3259 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4664  
Permanent link to this record
 

 
Author Liu, B.; Martre, P.; Ewert, F.; Porter, J.R.; Challinor, A.J.; Mueller, C.; Ruane, A.C.; Waha, K.; Thorburn, P.J.; Aggarwal, P.K.; Ahmed, M.; Balkovic, J.; Basso, B.; Biernath, C.; Bindi, M.; Cammarano, D.; De Sanctis, G.; Dumont, B.; Espadafor, M.; Rezaei, E.E.; Ferrise, R.; Garcia-Vila, M.; Gayler, S.; Gao, Y.; Horan, H.; Hoogenboom, G.; Izaurralde, R.C.; Jones, C.D.; Kassie, B.T.; Kersebaum, K.C.; Klein, C.; Koehler, A.-K.; Maiorano, A.; Minoli, S.; San Martin, M.M.; Kumar, S.N.; Nendel, C.; O’Leary, G.J.; Palosuo, T.; Priesack, E.; Ripoche, D.; Roetter, R.P.; Semenov, M.A.; Stockle, C.; Streck, T.; Supit, I.; Tao, F.; Van der Velde, M.; Wallach, D.; Wang, E.; Webber, H.; Wolf, J.; Xiao, L.; Zhang, Z.; Zhao, Z.; Zhu, Y.; Asseng, S. doi  openurl
  Title Global wheat production with 1.5 and 2.0 degrees C above pre-industrial warming Type Journal Article
  Year 2019 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume (down) 25 Issue 4 Pages 1428-1444  
  Keywords 1.5 degrees C warming; climate change; extreme low yields; food security; model ensemble; wheat production; Climate-Change; Crop Yield; Impacts; Co2; Adaptation; Responses; Models; Agriculture; Simulation; Growth  
  Abstract Efforts to limit global warming to below 2 degrees C in relation to the pre-industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2 degrees C on mean crop yields, and many previous studies did not focus sufficiently on extreme events and yield interannual variability. Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris Agreement range of global warming (1.5 and 2.0 degrees C warming above the pre-industrial period) on global wheat production and local yield variability. A multi-crop and multi-climate model ensemble over a global network of sites developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major rainfed and irrigated wheat cropping systems. Results show that projected global wheat production will change by -2.3% to 7.0% under the 1.5 degrees C scenario and -2.4% to 10.5% under the 2.0 degrees C scenario, compared to a baseline of 1980-2010, when considering changes in local temperature, rainfall, and global atmospheric CO2 concentration, but no changes in management or wheat cultivars. The projected impact on wheat production varies spatially; a larger increase is projected for temperate high rainfall regions than for moderate hot low rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced than in cooler regions. Despite mostly positive impacts on global average grain yields, the frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield inter-annual variability will increase under both warming scenarios for some of the hot growing locations, including locations from the second largest global wheat producer-India, which supplies more than 14% of global wheat. The projected global impact of warming <2 degrees C on wheat production is therefore not evenly distributed and will affect regional food security across the globe as well as food prices and trade.  
  Address 2019-04-27  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5219  
Permanent link to this record
 

 
Author Lehtonen, H. openurl 
  Title Evaluating adaptation and the production development of Finnish agriculture in climate and global change Type Journal Article
  Year 2015 Publication Agricultural and Food Science Abbreviated Journal Agricultural and Food Science  
  Volume (down) 24 Issue 3 Pages 219-234  
  Keywords agricultural sector modelling; economic adjustment; global prices; climate change; finnish agriculture; crop production; land-use; challenge; ensembles; Finland; Europe; policy  
  Abstract Agricultural product prices and policies influence the development of crop yields under climate change through farm level management decisions. On this basis, five main scenarios were specified for agricultural commodity prices and crop yields. An economic agricultural sector model was used in order to assess the impacts of the scenarios on production, land use and farm income in Finland. The results suggest that falling crop yields, if realized due to low prices and restrictive policies, will result in decreasing crop and livestock production and increasing nutrient surplus. Slowly increasing crop yields could stabilise production and increase farm income. Significantly higher crop prices and yields are required, however, for any marked increase in production in Finland. Cereals production would increase relatively more than livestock production, if there were high prices for agricultural products. This is explained by abundant land resources, a high opportunity cost of labour and policies maintaining current dairy and beef production.  
  Address 2016-07-22  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1459-6067 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4750  
Permanent link to this record
 

 
Author Tao, F.; Roetter, R.P.; Palosuo, T.; Hernandez Diaz-Ambrona, C.G.; Ines Minguez, M.; Semenov, M.A.; Kersebaum, K.C.; Nendel, C.; Specka, X.; Hoffmann, H.; Ewert, F.; Dambreville, A.; Martre, P.; Rodriguez, L.; Ruiz-Ramos, M.; Gaiser, T.; Hohn, J.G.; Salo, T.; Ferrise, R.; Bindi, M.; Cammarano, D.; Schulman, A.H. doi  openurl
  Title Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments Type Journal Article
  Year 2018 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume (down) 24 Issue 3 Pages 1291-1307  
  Keywords barley; climate change; Europe; impact; super-ensemble; uncertainty; Nitrogen Dynamics; Multimodel Ensembles; Simulation-Models; Change; Scenarios; Yield; Rice; Weather; Growth; Wheat; Maize  
  Abstract Climate change impact assessments are plagued with uncertainties from many sources, such as climate projections or the inadequacies in structure and parameters of the impact model. Previous studies tried to account for the uncertainty from one or two of these. Here, we developed a triple-ensemble probabilistic assessment using seven crop models, multiple sets of model parameters and eight contrasting climate projections together to comprehensively account for uncertainties from these three important sources. We demonstrated the approach in assessing climate change impact on barley growth and yield at Jokioinen, Finland in the Boreal climatic zone and Lleida, Spain in the Mediterranean climatic zone, for the 2050s. We further quantified and compared the contribution of crop model structure, crop model parameters and climate projections to the total variance of ensemble output using Analysis of Variance (ANOVA). Based on the triple-ensemble probabilistic assessment, the median of simulated yield change was -4% and +16%, and the probability of decreasing yield was 63% and 31% in the 2050s, at Jokioinen and Lleida, respectively, relative to 1981-2010. The contribution of crop model structure to the total variance of ensemble output was larger than that from downscaled climate projections and model parameters. The relative contribution of crop model parameters and downscaled climate projections to the total variance of ensemble output varied greatly among the seven crop models and between the two sites. The contribution of downscaled climate projections was on average larger than that of crop model parameters. This information on the uncertainty from different sources can be quite useful for model users to decide where to put the most effort when preparing or choosing models or parameters for impact analyses. We concluded that the triple-ensemble probabilistic approach that accounts for the uncertainties from multiple important sources provide more comprehensive information for quantifying uncertainties in climate change impact assessments as compared to the conventional approaches that are deterministic or only account for the uncertainties from one or two of the uncertainty sources.  
  Address 2018-03-08  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5194  
Permanent link to this record
 

 
Author Martre, P.; Wallach, D.; Asseng, S.; Ewert, F.; Jones, J.W.; Rötter, R.P.; Boote, K.J.; Ruane, A.C.; Thorburn, P.J.; Cammarano, D.; Hatfield, J.L.; Rosenzweig, C.; Aggarwal, P.K.; Angulo, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Brisson, N.; Challinor, A.J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.F.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Kersebaum, K.C.; Müller, C.; Kumar, S.N.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; White, J.W.; Wolf, J. doi  openurl
  Title Multimodel ensembles of wheat growth: many models are better than one Type Journal Article
  Year 2015 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume (down) 21 Issue 2 Pages 911-925  
  Keywords Climate; Climate Change; Environment; *Models, Biological; Seasons; Triticum/*growth & development; ecophysiological model; ensemble modeling; model intercomparison; process-based model; uncertainty; wheat (Triticum aestivum L.)  
  Abstract Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4665  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: