toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dumont, B.; Leemans, V.; Ferrandis, S.; Bodson, B.; Destain, J.-P.; Destain, M.-F. url  doi
openurl 
  Title (up) Assessing the potential of an algorithm based on mean climatic data to predict wheat yield Type Journal Article
  Year 2014 Publication Precision Agriculture Abbreviated Journal Precision Agric.  
  Volume 15 Issue 3 Pages 255-272  
  Keywords stics model; yield prediction; real-time; proxy-sensing; stochastic weather generator; crop yield; mediterranean environment; simulation-model; variability; nitrogen; ensembles; forecasts; demeter; europe  
  Abstract The real-time non-invasive determination of crop biomass and yield prediction is one of the major challenges in agriculture. An interesting approach lies in using process-based crop yield models in combination with real-time monitoring of the input climatic data of these models, but unknown future weather remains the main obstacle to reliable yield prediction. Since accurate weather forecasts can be made only a short time in advance, much information can be derived from analyzing past weather data. This paper presents a methodology that addresses the problem of unknown future weather by using a daily mean climatic database, based exclusively on available past measurements. It involves building climate matrix ensembles, combining different time ranges of projected mean climate data and real measured weather data originating from the historical database or from real-time measurements performed in the field. Used as an input for the STICS crop model, the datasets thus computed were used to perform statistical within-season biomass and yield prediction. This work demonstrated that a reliable predictive delay of 3-4 weeks could be obtained. In combination with a local micrometeorological station that monitors climate data in real-time, the approach also enabled us to (i) predict potential yield at the local level, (ii) detect stress occurrence and (iii) quantify yield loss (or gain) drawing on real monitored climatic conditions of the previous few days.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-2256 1573-1618 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4621  
Permanent link to this record
 

 
Author Höglind, M.; Thorsen, S.M.; Semenov, M.A. url  doi
openurl 
  Title (up) Assessing uncertainties in impact of climate change on grass production in Northern Europe using ensembles of global climate models Type Journal Article
  Year 2013 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 170 Issue Pages 103-113  
  Keywords climatic variability; frost damage; grass modelling; ice damage; multi-model ensemble; elevated co2 concentration; phleum-pratense l; timothy regrowth; change scenarios; winter survival; meadow fescue; crop yields; growth; frost; temperature  
  Abstract Forage-based dairy and livestock production is the backbone of agriculture in Northern Europe in economic terms. Changes in growing conditions that affect forage grass yield may have great economic consequences. This study assessed the impact of climate change on two grass species, timothy and ryegrass, at 14 locations in Northern Europe (Iceland, Scandinavia, Baltic countries) in a near-future scenario (2040-2065) compared with the baseline period 1960-1990. Local-scale climate scenarios were based on the CMIP3 multi-model ensembles of 15 global climate models in order to quantify the uncertainty in the impacts relating to highly uncertain projections of future climate. Potential yield of timothy, the most important perennial forage grass in Northern Europe, was simulated under the assumption of optimal overwintering conditions and current CO2 level, in order to obtain an estimate of the effect of changes in summer climate per se. The risk of frost and ice damage during winter was also assessed. The simulation results demonstrated that potential grass yield will increase throughout the study area, mainly as a result of increased growing temperatures. The yield response to climate change was slightly larger in irrigated than non-irrigated conditions (14% and 11%, respectively), due to larger water deficit for the 2050 scenario. However, a geo-climatic gradient was evident, with the largest predicted yield response at western locations. A geo-climatic gradient was also revealed with respect to potential frost damage, which was predicted to increase during winter in some areas east of the Baltic Sea for timothy, and for a larger number of locations both east and west of the Baltic Sea for perennial ryegrass. The risk of frost damage in spring was predicted to increase mainly in western parts of the study area. If frost damage to perennial ryegrass increases during winter, the expected increase in winter temperature due to global warming may not necessarily improve overwintering conditions, so the growing zone may not necessarily expand to the north and east of the study area by 2050. The uncertainty in impacts was frequently, but not consistently, greater in western than eastern locations. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4492  
Permanent link to this record
 

 
Author Fronzek, S.; Pirttioja, N.; Carter, T.R.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.-F.; Dumont, B.; Ewert, F.; Ferrise, R.; Francois, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.C.; Kollas, C.; Krzyszczaki, J.; Lorite, I.J.; Minet, J.; Ines Minguez, M.; Montesino, M.; Moriondo, M.; Mueller, C.; Nendel, C.; Ozturk, I.; Perego, A.; Rodriguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rotter, R.P. doi  openurl
  Title (up) Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change Type Journal Article
  Year 2018 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 159 Issue Pages 209-224  
  Keywords Classification; Climate change; Crop model; Ensemble; Sensitivity analysis; Wheat; Climate-Change; Crop Models; Probabilistic Assessment; Simulating; Impacts; British Catchments; Uncertainty; Europe; Productivity; Calibration; Adaptation  
  Abstract Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (-2 to +9 degrees C) and precipitation (-50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.  
  Address 2018-01-25  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5186  
Permanent link to this record
 

 
Author Ruiz-Ramos, M.; Rodriguez, A.; Dosio, A.; Goodess, C.M.; Harpham, C.; Minguez, M.I.; Sanchez, E. url  doi
openurl 
  Title (up) Comparing correction methods of RCM outputs for improving crop impact projections in the Iberian Peninsula for 21st century Type Journal Article
  Year 2016 Publication Climatic Change Abbreviated Journal Clim. Change  
  Volume 134 Issue 1-2 Pages 283-297  
  Keywords regional climate model; bias correction; weather generator; circulation model; simulations; temperature; precipitation; ensemble; uncertainty; extremes  
  Abstract Assessment of climate change impacts on crops in regions of complex orography such as the Iberian Peninsula (IP) requires climate model output which is able to describe accurately the observed climate. The high resolution of output provided by Regional Climate Models (RCMs) is expected to be a suitable tool to describe regional and local climatic features, although their simulation results may still present biases. For these reasons, we compared several post-processing methods to correct or reduce the biases of RCM simulations from the ENSEMBLES project for the IP. The bias-corrected datasets were also evaluated in terms of their applicability and consequences in improving the results of a crop model to simulate maize growth and development at two IP locations, using this crop as a reference for summer cropping systems in the region. The use of bias-corrected climate runs improved crop phenology and yield simulation overall and reduced the inter-model variability and thus the uncertainty. The number of observational stations underlying each reference observational dataset used to correct the bias affected the correction performance. Although no single technique showed to be the best one, some methods proved to be more adequate for small initial biases, while others were useful when initial biases were so large as to prevent data application for impact studies. An initial evaluation of the climate data, the bias correction/reduction method and the consequences for impact assessment would be needed to design the most robust, reduced uncertainty ensemble for a specific combination of location, crop, and crop management.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4805  
Permanent link to this record
 

 
Author Watson, J.; Challinor, A.J.; Fricker, T.E.; Ferro, C.A.T. url  doi
openurl 
  Title (up) Comparing the effects of calibration and climate errors on a statistical crop model and a process-based crop model Type Journal Article
  Year 2015 Publication Climatic Change Abbreviated Journal Clim. Change  
  Volume 132 Issue 1 Pages 93-109  
  Keywords maize; yield; ensemble; impacts; design; heat  
  Abstract Understanding the relationship between climate and crop productivity is a key component of projections of future food production, and hence assessments of food security. Climate models and crop yield datasets have errors, but the effects of these errors on regional scale crop models is not well categorized and understood. In this study we compare the effect of synthetic errors in temperature and precipitation observations on the hindcast skill of a process-based crop model and a statistical crop model. We find that errors in temperature data have a significantly stronger influence on both models than errors in precipitation. We also identify key differences in the responses of these models to different types of input data error. Statistical and process-based model responses differ depending on whether synthetic errors are overestimates or underestimates. We also investigate the impact of crop yield calibration data on model skill for both models, using datasets of yield at three different spatial scales. Whilst important for both models, the statistical model is more strongly influenced by crop yield scale than the process-based crop model. However, our results question the value of high resolution yield data for improving the skill of crop models; we find a focus on accuracy to be more likely to be valuable. For both crop models, and for all three spatial scales of yield calibration data, we found that model skill is greatest where growing area is above 10-15 %. Thus information on area harvested would appear to be a priority for data collection efforts. These results are important for three reasons. First, understanding how different crop models rely on different characteristics of temperature, precipitation and crop yield data allows us to match the model type to the available data. Second, we can prioritize where improvements in climate and crop yield data should be directed. Third, as better climate and crop yield data becomes available, we can predict how crop model skill should improve.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 1573-1480 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4546  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: