|   | 
Details
   web
Records
Author Rötter, R.P.; Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Bindi, M.; Ewert, F.; Ferrise, R.; Hlavinka, P.; Moriondo, M.; Nendel, C.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Takác, J.; Trnka, M.
Title Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models Type Journal Article
Year 2012 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 133 Issue Pages 23-36
Keywords climate; crop growth simulation; model comparison; spring barley; yield variability; uncertainty; change impacts; nitrogen dynamics; high-temperature; soil-moisture; elevated co2; ceres-wheat; data set; growth; drought; sensitivity
Abstract In this study, the performance of nine widely used and accessible crop growth simulation models (APES-ACE, CROPSYST, DAISY, DSSAT-CERES, FASSET, HERMES, MONICA, STICS and WOFOST) was compared during 44 growing seasons of spring barley (Hordeum vulgare L) at seven sites in Northern and Central Europe. The aims of this model comparison were to examine how different process-based crop models perform at multiple sites across Europe when applied with minimal information for model calibration of spring barley at field scale, whether individual models perform better than the multi-model mean, and what the uncertainty ranges are in simulated grain yields. The reasons for differences among the models and how results for barley compare to winter wheat are discussed. Regarding yield estimation, best performing based on the root mean square error (RMSE) were models HERMES, MONICA and WOFOST with lowest values of 1124, 1282 and 1325 (kg ha(-1)), respectively. Applying the index of agreement (IA), models WOFOST, DAISY and HERMES scored best having highest values (0.632, 0.631 and 0.585, respectively). Most models systematically underestimated yields, whereby CROPSYST showed the highest deviation as indicated by the mean bias error (MBE) (-1159 kg ha(-1)). While the wide range of simulated yields across all sites and years shows the high uncertainties in model estimates with only restricted calibration, mean predictions from the nine models agreed well with observations. Results of this paper also show that models that were more accurate in predicting phenology were not necessarily the ones better estimating grain yields. Total above-ground biomass estimates often did not follow the patterns of grain yield estimates and, thus, harvest indices were also different. Estimates of soil moisture dynamics varied greatly. In comparison, even though the growing cycle for winter wheat is several months longer than for spring barley, using RMSE and IA as indicators, models performed slightly, but not significantly, better in predicting wheat yields. Errors in reproducing crop phenology were similar, which in conjunction with the shorter growth cycle of barley has higher effects on accuracy in yield prediction. (C) 2012 Elsevier B.V. All rights reserved.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4803
Permanent link to this record
 

 
Author Sandor, R.; Ehrhardt, F.; Grace, P.; Recous, S.; Smith, P.; Snow, V.; Soussana, J.-F.; Basso, B.; Bhatia, A.; Brilli, L.; Doltra, J.; Dorich, C.D.; Doro, L.; Fitton, N.; Grant, B.; Harrison, M.T.; Kirschbaum, M.U.F.; Klumpp, K.; Laville, P.; Leonard, J.; Martin, R.; Massad, R.-S.; Moore, A.; Myrgiotis, V.; Pattey, E.; Rolinski, S.; Sharp, J.; Skiba, U.; Smith, W.; Wu, L.; Zhang, Q.; Bellocchi, G.
Title Ensemble modelling of carbon fluxes in grasslands and croplands Type Journal Article
Year 2020 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 252 Issue Pages 107791
Keywords C fluxes; croplands; grasslands; multi-model ensemble; multi-model; median (mmm); soil organic-carbon; greenhouse-gas emissions; climate-change impacts; crop model; data aggregation; use efficiency; n2o emissions; maize; yield; wheat; productivity
Abstract Croplands and grasslands are agricultural systems that contribute to land–atmosphere exchanges of carbon (C). We evaluated and compared gross primary production (GPP), ecosystem respiration (RECO), net ecosystem exchange (NEE) of CO2, and two derived outputs – C use efficiency (CUE=-NEE/GPP) and C emission intensity (IntC= -NEE/Offtake [grazed or harvested biomass]). The outputs came from 23 models (11 crop-specific, eight grassland-specific, and four models covering both systems) at three cropping sites over several rotations with spring and winter cereals, soybean and rapeseed in Canada, France and India, and two temperate permanent grasslands in France and the United Kingdom. The models were run independently over multi-year simulation periods in five stages (S), either blind with no calibration and initialization data (S1), using historical management and climate for initialization (S2), calibrated against plant data (S3), plant and soil data together (S4), or with the addition of C and N fluxes (S5). Here, we provide a framework to address methodological uncertainties and contextualize results. Most of the models overestimated or underestimated the C fluxes observed during the growing seasons (or the whole years for grasslands), with substantial differences between models. For each simulated variable, changes in the multi-model median (MMM) from S1 to S5 was used as a descriptor of the ensemble performance. Overall, the greatest improvements (MMM approaching the mean of observations) were achieved at S3 or higher calibration stages. For instance, grassland GPP MMM was equal to 1632 g C m−2 yr-1 (S5) while the observed mean was equal to 1763 m-2 yr-1 (average for two sites). Nash-Sutcliffe modelling efficiency coefficients indicated that MMM outperformed individual models in 92.3 % of cases. Our study suggests a cautious use of large-scale, multi-model ensembles to estimate C fluxes in agricultural sites if some site-specific plant and soil observations are available for model calibration. The further development of crop/grassland ensemble modelling will hinge upon the interpretation of results in light of the way models represent the processes underlying C fluxes in complex agricultural systems (grassland and crop rotations including fallow periods).
Address 2020-06-08
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes LiveM Approved no
Call Number MA @ admin @ Serial 5230
Permanent link to this record
 

 
Author Savary, S.; Jouanin, C.; Félix, I.; Gourdain, E.; Piraux, F.; Brun, F.; Willocquet, L.
Title Assessing plant health in a network of experiments on hardy winter wheat varieties in France: patterns of disease-climate associations Type Journal Article
Year 2016 Publication European Journal of Plant Pathology Abbreviated Journal Eur. J. Plant Pathol.
Volume 146 Issue Pages 741-755
Keywords Puccinia triticina; Puccinia striiformis; Fusarium graminearum; Fusarium culmorum; Fusarium avenaceum; Blumeria graminis; Zymoseptoria tritici; Categorical data; Risk factor; Multiple pathosystem; Correspondence analysis; Logistic regression
Abstract A data set generated by a multi-year (2003–2010) and multi-site network of experiments on winter wheat varieties grown at different levels of crop management is analysed in order to assess the importance of climate on the variability of wheat health. Wheat health is represented by the multiple pathosystem involving five components: leaf rust, yellow rust, fusarium head blight, powdery mildew, and septoria tritici blotch. An overall framework of associations between multiple diseases and climate variables is developed. This framework involves disease levels in a binary form (i.e. epidemic vs. non-epidemic) and synthesis variables accounting for climate over spring and early summer. The multiple disease-climate pattern of associations of this framework conforms to disease-specific knowledge of climate effects on the components of the pathosystem. It also concurs with a (climate-based) risk factor approach to wheat diseases. This report emphasizes the value of large scale data in crop health assessment and the usefulness of a risk factor approach for both tactical and strategic decisions for crop health management.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0929-1873 1573-8469 ISBN Medium
Area CropM Expedition Conference
Notes CropMwp;wos; ftnot_macsur; Approved no
Call Number MA @ admin @ Serial 4755
Permanent link to this record
 

 
Author Stefańczyk, E.; Sobkowiak, S.; Brylińska, M.; Śliwka, J.
Title Diversity of Fusarium spp. associated with dry rot of potato tubers in Poland Type Journal Article
Year 2016 Publication European Journal of Plant Pathology Abbreviated Journal Eur. J. Plant Pathol.
Volume Issue Pages
Keywords ITS; mycotoxin; pathogenicity; Solanum tuberosum; tef-1α; β-tubulin; sequence data; Trichothecenes; identification; fungus; pathogenicity; temperature; sensitivity; zearalenone; strains; disease
Abstract Fusarium spp. belong to the division Ascomycota and cause important plant diseases; these fungi may contaminate food products with mycotoxins, endangering human and animal health. Several Fusarium spp. have been associated with potato dry rot. The most frequent and devastating of these species are F. sambucinum, F. solani and F. oxysporum, depending on the geographic location and the season. Samples of potato tubers with dry rot symptoms were collected, and their putative fungal isolates were identified as Fusarium species using partial nucleotide sequences of the internal transcribed spacer, translation elongation factor 1-α and β-tubulin genes. Among 149 isolates, 12 species were identified. F. oxysporum was the most frequent (45 % of the isolates), followed by F. avenaceum (12.1 %), F. solani (10.7 %) and F. sambucinum (7.4 %). Phylogenetic analyses confirmed the species identifications and revealed a high diversity of F. solani and a low diversity of F. oxysporum. Potential producers of zearalenone and trichothecenes were identified within the obtained isolates using PCR markers. Isolates that were pathogenic to potatoes in laboratory tests were found in four species: F. sambucinum, F. avenaceum, F. culmorum, and F. graminearum. The effects of increased temperature and mixed inoculum on the pathogenicities of chosen species were evaluated. This study adds 434 potato-derived Fusarium sequences to the NCBI GenBank database and demonstrates that the list of Fusarium species and mycotoxins present in potato tubers may be richer than previously believed, regardless of whether these species cause dry rot or live as saprophytes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0929-1873 1573-8469 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4721
Permanent link to this record
 

 
Author Toscano, P.; Genesio, L.; Crisci, A.; Vaccari, F.P.; Ferrari, E.; La Cava, P.; Porter, J.R.; Gioli, B.
Title Empirical modelling of regional and national durum wheat quality Type Journal Article
Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 204 Issue Pages 67-78
Keywords durum wheat; grain protein content; forecasting tool; modelling; gridded data; red winter-wheat; grain quality; climate-change; mediterranean conditions; interannual variability; protein-composition; co2 concentration; vapor-pressure; carbon-dioxide; crop yield
Abstract The production of durum wheat in the Mediterranean basin is expected to experience increased variability in yield and quality as a consequence of climate change. To assess how environmental variables and agronomic practices affect grain protein content (GPC), a novel approach based on monthly gridded input data has been implemented to develop empirical model, and validated on historical time series to assess its capability to reproduce observed spatial and inter-annual GPC variability. The model was applied in four Italian regions and at the whole national scale and proved reliable and usable for operational purposes also in a forecast ‘real-time’ mode before harvesting. Precipitable water during autumn to winter and air temperature from anthesis to harvest were extremely important influences on GPC; these and additional variables, included in a linear model, were able to account for 95% of the variability in GPC that has occurred in the last 15 years in Italy. Our results are a unique example of the use of modelling as a predictive real-time platform and are a useful tool to understand better and forecast the impacts of future climate change projections on durum wheat production and quality.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4818
Permanent link to this record