toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Rötter, R.P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, A.J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Kersebaum, K.C.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J. url  doi
openurl 
  Title Uncertainty in simulating wheat yields under climate change Type Journal Article
  Year 2013 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change  
  Volume 3 Issue 9 Pages 827-832  
  Keywords crop production; models; food; co2; temperature; projections; adaptation; scenarios; ensemble; impacts  
  Abstract Projections of climate change impacts on crop yields are inherently uncertain(1). Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate(2). However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models(1,3) are difficult(4). Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1758-678x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur, IPCC-AR5 Approved no  
  Call Number MA @ admin @ Serial 4599  
Permanent link to this record
 

 
Author Bai, H.; Tao, F. doi  openurl
  Title Sustainable intensification options to improve yield potential and ecoefficiency for rice-wheat rotation system in China Type Journal Article
  Year 2017 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 211 Issue Pages 89-105  
  Keywords Adaptation; Agro-ecosystem; Climate smart agriculture; Impacts; Sustainable development; Yield gap; Past 3 Decades; Climate-Change; Winter-Wheat; Agricultural Systems; Cropping Systems; High-Temperature; Plain; Management; Cultivars; Maize  
  Abstract Agricultural production systems are facing the challenges of increasing food production while reducing environmental cost, particularly in China. To improve yield potential and eco-efficiency simultaneously for the rice-wheat rotation system in China, we investigated changes in potential yields and yield gaps based on the field experiment data from 1981 to 2009 at four representative agro-meteorological experiment stations, along with the Agricultural Production System Simulator (APSIM) rice-wheat model. We further optimized crop cultivar and sowing/transplanting date, and investigated crop yield, water and nitrogen use efficiency, and environment impact of the rice-wheat rotation system in response to water and nitrogen supply. We found that the yield gaps between potential yields and farmer’s yields were about 8101 kg/ha or 45.3% of the potential yield, which had been shrinking from 1981 to 2009. To improve yield potentials and eco-efficiency, the cultivars of rice and wheat that properly increase both radiation use efficiency and grain weight are promising. Rice cultivars breeding need to maintain the length of panicle development and reproductive phase. High-yielding wheat cultivars are characterized by medium vernalization sensitivity, low photoperiod sensitivity and short length of floral initiation phase. Proper shift in sowing date can alleviate the negative effect of climate risk. Intermittent irrigation scheme (irrigate until surface soil saturated when average water content of surface soil is < 50% of saturated water content) for rice, together with nitrogen application rate of 390-420 kg N/ha (180-210 kg N/ha for rice and 210 kg N/ha for wheat), is suggested for the rice-wheat rotation system to maintain high yield with high resource use efficiency. This suggested nitrogen application rates are lower than those currently used by many local farmers. Our findings are useful to improve yield potential and eco-efficiency for the rice-wheat rotation system in China. Furthermore, this study demonstrates an effective approach with crop modelling to design fanning system for sustainable intensification, which can be adapted to other farming systems and regions.  
  Address 2017-08-28  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5174  
Permanent link to this record
 

 
Author Bai, H.; Tao, F.; Xiao, D.; Liu, F.; Zhang, H. url  doi
openurl 
  Title Attribution of yield change for rice-wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades Type Journal Article
  Year 2016 Publication Climatic Change Abbreviated Journal Clim. Change  
  Volume 135 Issue 3-4 Pages 539-553  
  Keywords nitrogen-use efficiency; crop yields; winter-wheat; temperature; responses; impacts; decline; models; trends; plain  
  Abstract Using the detailed field experiment data from 1981 to 2009 at four representative agro-meteorological experiment stations in China, along with the Agricultural Production System Simulator (APSIM) rice-wheat model, we evaluated the impact of sowing/transplanting date on phenology and yield of rice-wheat rotation system (RWRS). We also disentangled the contributions of climate change, modern cultivars, sowing/transplanting density and fertilization management, as well as changes in each climate variables, to yield change in RWRS, in the past three decades. We found that change in sowing/transplanting date did not significantly affect rice and wheat yield in RWRS, although alleviated the negative impact of climate change to some extent. From 1981 to 2009, climate change jointly caused rice and wheat yield change by -17.4 to 1.5 %, of which increase in temperature reduced yield by 0.0-5.8 % and decrease in solar radiation reduced it by 1.5-8.7 %. Cultivars renewal, modern sowing/transplanting density and fertilization management contributed to yield change by 14.4-27.2, -4.7- -0.1 and 2.3-22.2 %, respectively. Our findings highlight that modern cultivars and agronomic management compensated the negative impacts of climate change and played key roles in yield increase in the past three decades.  
  Address 2016-06-01  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4736  
Permanent link to this record
 

 
Author Baker, A.; Ceasar, S.A.; Palmer, A.J.; Paterson, J.B.; Qi, W.; Muench, S.P.; Baldwin, S.A. doi  openurl
  Title Replace, reuse, recycle: improving the sustainable use of phosphorus by plants Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3523-3540  
  Keywords Conservation of Natural Resources; Crops, Agricultural/growth & development/metabolism; Gene Expression Regulation, Plant; Phosphorus/*metabolism; Plant Proteins/genetics/metabolism; Plants/genetics/*metabolism; Fertilizers; membrane transporters; nutrient recycling; phosphate; phosphate signalling; transcription factors  
  Abstract The ‘phosphorus problem’ has recently received strong interest with two distinct strands of importance. The first is that too much phosphorus (P) is entering into waste water, creating a significant economic and ecological problem. Secondly, while agricultural demand for phosphate fertilizer is increasing to maintain crop yields, rock phosphate reserves are rapidly declining. Unravelling the mechanisms by which plants sense, respond to, and acquire phosphate can address both problems, allowing the development of crop plants that are more efficient at acquiring and using limited amounts of phosphate while at the same time improving the potential of plants and other photosynthetic organisms for nutrient recapture and recycling from waste water. In this review, we attempt to synthesize these important but often disparate parts of the debate in a holistic fashion, since solutions to such a complex problem require integrated and multidisciplinary approaches that address both P supply and demand. Rapid progress has been made recently in our understanding of local and systemic signalling mechanisms for phosphate, and of expression and regulation of membrane proteins that take phosphate up from the environment and transport it within the plant. We discuss the current state of understanding of such mechanisms involved in sensing and responding to phosphate stress. We also discuss approaches to improve the P-use efficiency of crop plants and future direction for sustainable use of P, including use of photosynthetic organisms for recapture of P from waste waters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4548  
Permanent link to this record
 

 
Author Balkovič, J.; van der Velde, M.; Schmid, E.; Skalský, R.; Khabarov, N.; Obersteiner, M.; Stürmer, B.; Xiong, W. url  doi
openurl 
  Title Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation Type Journal Article
  Year 2013 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 120 Issue Pages 61-75  
  Keywords EPIC; large-scale crop modelling; model performance testing; EU; climate-change; high-resolution; organic-carbon; growth-model; wheat yield; water; calibration; impacts; productivity; simulations  
  Abstract Justifiable usage of large-scale crop model simulations requires transparent, comprehensive and spatially extensive evaluations of their performance and associated accuracy. Simulated crop yields of a Pan-European implementation of the Environmental Policy Integrated Climate (EPIC) crop model were satisfactorily evaluated with reported regional yield data from EUROSTAT for four major crops, including winter wheat, rainfed and irrigated maize, spring barley and winter rye. European-wide land use, elevation, soil and daily meteorological gridded data were integrated in GIS and coupled with EPIC. Default EPIC crop and biophysical process parameter values were used with some minor adjustments according to suggestions from scientific literature. The model performance was improved by spatial calculations of crop sowing densities, potential heat units, operation schedules, and nutrient application rates. EPIC performed reasonable in the simulation of regional crop yields, with long-term averages predicted better than inter-annual variability: linear regression R-2 ranged from 0.58 (maize) to 0.91 (spring barley) and relative estimation errors were between +/- 30% for most of the European regions. The modelled and reported crop yields demonstrated similar responses to driving meteorological variables. However, EPIC performed better in dry compared to wet years. A yield sensitivity analysis of crop nutrient and irrigation management factors and cultivar specific characteristics for contrasting regions in Europe revealed a range in model response and attainable yields. We also show that modelled crop yield is strongly dependent on the chosen PET method. The simulated crop yield variability was lower compared to reported crop yields. This assessment should contribute to the availability of harmonised and transparently evaluated agricultural modelling tools in the EU as well as the establishment of modelling benchmarks as a requirement for sound and ongoing policy evaluations in the agricultural and environmental domains. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.  
  Address 2016-06-01  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4737  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: