toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Cirillo, V.; Masin, R.; Maggio, A.; Zanin, G. doi  openurl
  Title Crop-weed interactions in saline environments Type Journal Article
  Year 2018 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.  
  Volume 99 Issue Pages 51-61  
  Keywords Salinity; Weeds; Abiotic stress; Crop management; Salt stress; Echinochloa-Crus-Galli; Portulaca Oleracea L.; Seed-Germination; Soil-Salinity; Salt Tolerance; Stress Tolerance; Chenopodium-Album; Chemical-Composition; Southern Australia; Microbial Biomass  
  Abstract Soil salinization is one of the most critical environmental factors affecting crop yield. It is estimated that 20% of cultivated land and 33% of irrigated agricultural land are affected by salinity. In the last decades, considerable effort to manage saline agro-ecosystems has focused on 1) controlling soil salinity to minimize/reduce the accumulation of salts in the root zone and 2) improving plants ability to cope with osmotic and ionic stress. Less attention has been given to other components of the agro-ecosystem including weed populations, which also react and adapt to soil salinization and indirectly affect plant growth and yield. Weeds represent an increasing challenge for crop systems since they have high genetic resilience and adaptation ability to adverse environmental conditions such as soil salinization. In this review, we assess current knowledge on salinity tolerance of weeds in agricultural contexts and discuss critical components of crop-weed interactions that may increase weeds competitiveness under salinity. Compared to crop species, weeds generally exhibit greater salt tolerance due to high intraspecific variability, associated with diverse physiological adaptation mechanisms (e.g. phenotipic plasticity, seed heteromorphism, allelopathy). Weed competitiveness in saline soils may be enhanced by their earlier emergence, faster growth rates and synergies occurring between soil salts and allelochemicals released by weeds. In the future, a better understanding of crop-weed relationships and molecular, physiological and agronomic stress responses under salinity is essential to design efficient strategies to achieve weed control under altered climatic and environmental conditions.  
  Address 2018-09-20  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5209  
Permanent link to this record
 

 
Author (up) Conradt, T.; Gornott, C.; Wechsung, F. url  doi
openurl 
  Title Extending and improving regionalized winter wheat and silage maize yield regression models for Germany: Enhancing the predictive skill by panel definition through cluster analysis Type Journal Article
  Year 2016 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 216 Issue Pages 68-81  
  Keywords cluster analysis; crop yield estimation; germany; multivariate regression; silage maize; winter wheat; climate-change; canadian prairies; crop yield; temperature; responses; environments; variability; cultivar; china  
  Abstract Regional agricultural yield assessments allowing for weather effect quantifications are a valuable basis for deriving scenarios of climate change effects and developing adaptation strategies. Assessing weather effects by statistical methods is a classical approach, but for obtaining robust results many details deserve attention and require individual decisions as is demonstrated in this paper. We evaluated regression models for annual yield changes of winter wheat and silage maize in more than 300 German counties and revised them to increase their predictive power. A major effort of this study was, however, aggregating separately estimated time series models (STSM) into panel data models (PDM) based on cluster analyses. The cluster analyses were based on the per-county estimates of STSM parameters. The original STSM formulations (adopted from a parallel study) contained also the non-meteorological input variables acreage and fertilizer price. The models were revised to use only weather variables as estimation basis. These consisted of time aggregates of radiation, precipitation, temperature, and potential evapotranspiration. Altering the input variables generally increased the predictive power of the models as did their clustering into PDM. For each crop, five alternative clusterings were produced by three different methods, and similarities between their spatial structures seem to confirm the existence of objective clusters about common model parameters. Observed smooth transitions of STSM parameter values in space suggest, however, spatial autocorrelation effects that could also be modeled explicitly. Both clustering and autocorrelation approaches can effectively reduce the noise in parameter estimation through targeted aggregation of input data. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4709  
Permanent link to this record
 

 
Author (up) Conradt, T.; Hattermann, F.F.; Koch, H.; Wechsung, F. openurl 
  Title Klima- und Landnutzungsszenarien in ihren Wirkungen auf den Wasserabfluss Type Book Chapter
  Year 2013 Publication Abbreviated Journal  
  Volume Issue Pages 177-209  
  Keywords CropM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Weißensee Verl. Place of Publication Berlin Editor Wechsung, F.; Hartje, V.; Kaden, S.; Venohr, M.; Hansjürgens, B.; Gräfe, P.  
  Language Summary Language Original Title  
  Series Editor Series Title Die Elbe im globalen Wandel Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2365  
Permanent link to this record
 

 
Author (up) Conradt, T.; Koch, H.; Hattermann, F.F.; Wechsung, F.; Hartje, V.; Kaden, S.; Venohr, M.; Hansjürgens, B.; Gräfe, P. openurl 
  Title Validierung von Lokalkorrekturen der Verdunstung bei den Simulationen des Wasserabflusses Type Book Chapter
  Year 2013 Publication Abbreviated Journal  
  Volume Issue Pages 211-231  
  Keywords CropM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Weißensee Verl. Place of Publication Berlin Editor Wechsung, F.; Hartje, V.; Kaden, S.; Venohr, M.; Hansjürgens, B.; Gräfe, P.  
  Language Summary Language Original Title  
  Series Editor Series Title Die Elbe im globalen Wandel Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2367  
Permanent link to this record
 

 
Author (up) Coucheney, E.; Buis, S.; Launay, M.; Constantin, J.; Mary, B.; García de Cortázar-Atauri, I.; Ripoche, D.; Beaudoin, N.; Ruget, F.; &rianarisoa, K.S.; Le Bas, C.; Justes, E.; Léonard, J. url  doi
openurl 
  Title Accuracy, robustness and behavior of the STICS soil–crop model for plant, water and nitrogen outputs: Evaluation over a wide range of agro-environmental conditions in France Type Journal Article
  Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 64 Issue Pages 177-190  
  Keywords soil-crop model; stics; model performances; plant biomass; soil nitrogen; soil water; remote-sensing data; goodness-of-fit; hydrological model; simulation-models; solar-radiation; regional-scale; climate-change; generic model; data set; validation  
  Abstract Soil-crop models are increasingly used as predictive tools to assess yield and environmental impacts of agriculture in a growing diversity of contexts. They are however seldom evaluated at a given time over a wide domain of use. We tested here the performances of the STICS model (v8.2.2) with its standard set of parameters over a dataset covering 15 crops and a wide range of agropedoclimatic conditions in France. Model results showed a good overall accuracy, with little bias. Relative RMSE was larger for soil nitrate (49%) than for plant biomass (35%) and nitrogen (33%) and smallest for soil water (10%). Trends induced by contrasted environmental conditions and management practices were well reproduced. Finally, limited dependency of model errors on crops or environments indicated a satisfactory robustness. Such performances make STICS a valuable tool for studying the effects of changes in agro-ecosystems over the domain explored. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4554  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: