|   | 
Details
   web
Records
Author Ghaley, B.B.; Sandhu, H.S.; Porter, J.R.
Title Relationship between C:N/C:O stoichiometry and ecosystem services in managed production systems Type Journal Article
Year 2015 Publication PLoS One Abbreviated Journal PLoS One
Volume 10 Issue 4 Pages (down) e0123869
Keywords Carbon/*metabolism; *Conservation of Natural Resources/economics; Denmark; *Ecosystem; Fagus/metabolism; Forests; Nitrogen/*metabolism; Oxygen/*metabolism; Soil
Abstract Land use and management intensity can influence provision of ecosystem services (ES). We argue that forest/agroforestry production systems are characterized by relatively higher C:O/C:N and ES value compared to arable production systems. Field investigations on C:N/C:O and 15 ES were determined in three diverse production systems: wheat monoculture (Cwheat), a combined food and energy system (CFE) and a beech forest in Denmark. The C:N/C:O ratios were 194.1/1.68, 94.1/1.57 and 59.5/1.45 for beech forest, CFE and Cwheat, respectively. The economic value of the non-marketed ES was also highest in beech forest (US$ 1089 ha(-1) yr(-1)) followed by CFE (US$ 800 ha(-1) yr(-1)) and Cwheat (US$ 339 ha(-1) yr(-1)). The combined economic value was highest in the CFE (US$ 3143 ha(-1) yr(-1)) as compared to the Cwheat (US$ 2767 ha(-1) yr(-1)) and beech forest (US$ 2365 ha(-1) yr(-1)). We argue that C:N/C:O can be used as a proxy of ES, particularly for the non-marketed ES, such as regulating, supporting and cultural services. These ES play a vital role in the sustainable production of food and energy. Therefore, they should be considered in decision making and developing appropriate policy responses for land use management.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4692
Permanent link to this record
 

 
Author Humpenöder, F.; Popp, A.; Dietrich, J.P.; Klein, D.; Lotze-Campen, H.; Bonsch, M.; Bodirsky, B.L.; Weindl, I.; Stevanovic, M.; Müller, C.
Title Investigating afforestation and bioenergy CCS as climate change mitigation strategies Type Journal Article
Year 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 9 Issue 6 Pages (down) 064029
Keywords climate change mitigation; afforestation; bioenergy; carbon capture and storage; land-use modeling; land-based mitigation; carbon sequestration; land-use change; crop productivity; carbon capture; energy; storage; model; food; conservation; agriculture; scenarios
Abstract The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600-700 GtCO(2)), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO(2)) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM Approved no
Call Number MA @ admin @ Serial 4627
Permanent link to this record
 

 
Author Jägermeyr, J.; Gerten, D.; Schaphoff, S.; Heinke, J.; Lucht, W.; Rockström, J.
Title Integrated crop water management might sustainably halve the global food gap Type Journal Article
Year 2016 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 11 Issue 2 Pages (down) 025002
Keywords sustainable intensification; yield gap; water harvesting; conservation agriculture; irrigation efficiency; food security; climate change adaptation; sub-saharan africa; rain-fed agriculture; dry-spell mitigation; supplemental irrigation; climate-change; smallholder irrigation; environmental impacts; developing-countries; semiarid region; south-africa
Abstract As planetary boundaries are rapidly being approached, humanity has little room for additional expansion and conventional intensification of agriculture, while a growing world population further spreads the food gap. Ample evidence exists that improved on-farm water management can close water-related yield gaps to a considerable degree, but its global significance remains unclear. In this modeling study we investigate systematically to what extent integrated crop water management might contribute to closing the global food gap, constrained by the assumption that pressure on water resources and land does not increase. Using a process-based bio-/agrosphere model, we simulate the yield-increasing potential of elevated irrigation water productivity (including irrigation expansion with thus saved water) and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected future climate (from 20 climate models, with and without beneficial CO2 effects). Results show that irrigation efficiency improvements can save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an ‘ambitious’ scenario), and if rerouted to irrigate neighboring rainfed systems, can boost kcal production significantly (26% global increase). Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, the ambitious yet achievable integrated water management strategies explored in this study could increase global production by 41% and close the water-related yield gap by 62%. Unabated climate change will have adverse effects on crop yields in many regions, but improvements in water management as analyzed here can buffer such effects to a significant degree.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM Approved no
Call Number MA @ admin @ Serial 4733
Permanent link to this record
 

 
Author Ponti, L.; Gutierrez, A.P.; Ruti, P.M.; Dell’Aquila, A.
Title Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers Type Journal Article
Year 2014 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.
Volume 111 Issue 15 Pages (down) 5598-5603
Keywords Animals; *Biodiversity; *Climate Change; Conservation of Natural Resources/*trends; Crops, Agricultural/*economics/physiology; Geography; Host-Parasite Interactions; Mediterranean Region; Models, Biological; Models, Economic; Olea/*parasitology/*physiology; Tephritidae/*physiology; Olea europaea; desertification; ecological impacts; economic impacts; species interactions
Abstract The Mediterranean Basin is a climate and biodiversity hot spot, and climate change threatens agro-ecosystems such as olive, an ancient drought-tolerant crop of considerable ecological and socioeconomic importance. Climate change will impact the interactions of olive and the obligate olive fruit fly (Bactrocera oleae), and alter the economics of olive culture across the Basin. We estimate the effects of climate change on the dynamics and interaction of olive and the fly using physiologically based demographic models in a geographic information system context as driven by daily climate change scenario weather. A regional climate model that includes fine-scale representation of the effects of topography and the influence of the Mediterranean Sea on regional climate was used to scale the global climate data. The system model for olive/olive fly was used as the production function in our economic analysis, replacing the commonly used production-damage control function. Climate warming will affect olive yield and fly infestation levels across the Basin, resulting in economic winners and losers at the local and regional scales. At the local scale, profitability of small olive farms in many marginal areas of Europe and elsewhere in the Basin will decrease, leading to increased abandonment. These marginal farms are critical to conserving soil, maintaining biodiversity, and reducing fire risk in these areas. Our fine-scale bioeconomic approach provides a realistic prototype for assessing climate change impacts in other Mediterranean agro-ecosystems facing extant and new invasive pests.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 1091-6490 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4539
Permanent link to this record
 

 
Author Baker, A.; Ceasar, S.A.; Palmer, A.J.; Paterson, J.B.; Qi, W.; Muench, S.P.; Baldwin, S.A.
Title Replace, reuse, recycle: improving the sustainable use of phosphorus by plants Type Journal Article
Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.
Volume 66 Issue 12 Pages (down) 3523-3540
Keywords Conservation of Natural Resources; Crops, Agricultural/growth & development/metabolism; Gene Expression Regulation, Plant; Phosphorus/*metabolism; Plant Proteins/genetics/metabolism; Plants/genetics/*metabolism; Fertilizers; membrane transporters; nutrient recycling; phosphate; phosphate signalling; transcription factors
Abstract The ‘phosphorus problem’ has recently received strong interest with two distinct strands of importance. The first is that too much phosphorus (P) is entering into waste water, creating a significant economic and ecological problem. Secondly, while agricultural demand for phosphate fertilizer is increasing to maintain crop yields, rock phosphate reserves are rapidly declining. Unravelling the mechanisms by which plants sense, respond to, and acquire phosphate can address both problems, allowing the development of crop plants that are more efficient at acquiring and using limited amounts of phosphate while at the same time improving the potential of plants and other photosynthetic organisms for nutrient recapture and recycling from waste water. In this review, we attempt to synthesize these important but often disparate parts of the debate in a holistic fashion, since solutions to such a complex problem require integrated and multidisciplinary approaches that address both P supply and demand. Rapid progress has been made recently in our understanding of local and systemic signalling mechanisms for phosphate, and of expression and regulation of membrane proteins that take phosphate up from the environment and transport it within the plant. We discuss the current state of understanding of such mechanisms involved in sensing and responding to phosphate stress. We also discuss approaches to improve the P-use efficiency of crop plants and future direction for sustainable use of P, including use of photosynthetic organisms for recapture of P from waste waters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0957 1460-2431 ISBN Medium Review
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4548
Permanent link to this record