|   | 
Details
   web
Records
Author Fürst, C.; Helming, K.; Lorz, C.; Müller, F.; Verburg, P.H.
Title Integrated land use and regional resource management--a cross-disciplinary dialogue on future perspectives for a sustainable development of regional resources Type Journal Article
Year 2013 Publication Journal of Environmental Management Abbreviated Journal J. Environ. Manage.
Volume 127 Suppl Issue Pages S1-S5
Keywords Conservation of Natural Resources/*methods; Analytical framework for integrated planning; Integrated land use; Regional planning; Regional resource management; Sustainable regional development
Abstract Our paper introduces objectives and ideas of the special issue “Integrated land use and regional resource management – A cross-disciplinary dialogue on future perspectives for a sustainable development of regional resources” and provides an overview on the contributions of the single papers in the special issue to this topic. Furthermore, we discuss and present major challenges and demands on integrated land use and regional resource management and we come up with an analytical framework how to correspond these demands.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN 0301-4797 ISBN Medium
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4826
Permanent link to this record
 

 
Author Schmitz, C.; Kreidenweis, U.; Lotze-Campen, H.; Popp, A.; Krause, M.; Dietrich, J.P.; Müller, C.
Title Agricultural trade and tropical deforestation: interactions and related policy options Type Journal Article
Year 2014 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change
Volume 15 Issue 8 Pages 1757-1772
Keywords Land-use change; Trade liberalisation; Tropical deforestation; Forest; protection; Agricultural productivity growth; land-use; brazilian amazon; co2 concentrations; carbon emissions; conservation; climate; mitigation; forests; impact; growth; Environmental Sciences & Ecology
Abstract The extensive clearing of tropical forests throughout past decades has been partly assigned to increased trade in agricultural goods. Since further trade liberalisation can be expected, remaining rainforests are likely to face additional threats with negative implications for climate mitigation and the local environment. We apply a spatially explicit economic land-use model coupled to a biophysical vegetation model to examine linkages and associated policies between trade and tropical deforestation in the future. Results indicate that further trade liberalisation leads to an expansion of deforestation in Amazonia due to comparative advantages of agriculture in South America. Globally, between 30 and 60 million ha (5-10 %) of tropical rainforests would be cleared additionally, leading to 20-40 Gt additional emissions by 2050. By applying different forest protection policies, those values could be reduced substantially. Most effective would be the inclusion of avoided deforestation into a global emissions trading scheme. Carbon prices corresponding to the concentration target of 550 ppm would prevent deforestation after 2020. Investing in agricultural productivity reduces pressure on tropical forests without the necessity of direct protection. In general, additional trade-induced demand from developed and emerging countries should be compensated by international efforts to protect natural resources in tropical regions.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN 1436-3798 1436-378x ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4810
Permanent link to this record
 

 
Author Moraru, P.I.; Rusu, T.; Guș, P.; Bogdan, I.; Pop, A.I.
Title The role of minimum tillage in protecting environmental resources of the Transylvanian Plain, Romania Type Journal Article
Year 2015 Publication Romanian Agricultural Research Abbreviated Journal Romanian Agricultural Research
Volume 32 Issue Pages 127-135
Keywords minimum tillage; soil conservation; crop production; winter-wheat; systems; maize; conservation; temperature; yield; l.
Abstract Conservative tillage systems tested in the hilly area of the Transylvanian Plain (Romania), confirms the possibility of improving the biological, physical, chemical and technologizcal properties of the soil. Conservative components include minimum tillage systems and surface incorporation of crop residues. The minimum tillage soil systems with paraplow, chisel or rotary harrow are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. The minimum tillage systems ensure an adequate aerial-hydrical regime for the biological activity intensity and for the nutrients solubility equilibrium. The vegetal material remaining at the soil surface or superficially incorporated has its contribution to intensifying the biological activity, being an important resource of organic matter. Humus content increases by 0.41%. The minimum tillage systems rebuild the soil structure (hydrostable macroagregate content increases up to 2.2% to 5.2%), improving the global drainage of soil which allows a rapid infiltration of water in soil. Water reserve, accumulated in the 0-50 cm depth is with 1-32 m(3) ha(-1) higher in the minimum tillage variants. The result is a more productive soil, better protected against wind and water erosion and needing less fuel for preparing the germination bed.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN 1222-4227 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4795
Permanent link to this record
 

 
Author Jägermeyr, J.; Gerten, D.; Schaphoff, S.; Heinke, J.; Lucht, W.; Rockström, J.
Title Integrated crop water management might sustainably halve the global food gap Type Journal Article
Year 2016 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 11 Issue 2 Pages 025002
Keywords sustainable intensification; yield gap; water harvesting; conservation agriculture; irrigation efficiency; food security; climate change adaptation; sub-saharan africa; rain-fed agriculture; dry-spell mitigation; supplemental irrigation; climate-change; smallholder irrigation; environmental impacts; developing-countries; semiarid region; south-africa
Abstract As planetary boundaries are rapidly being approached, humanity has little room for additional expansion and conventional intensification of agriculture, while a growing world population further spreads the food gap. Ample evidence exists that improved on-farm water management can close water-related yield gaps to a considerable degree, but its global significance remains unclear. In this modeling study we investigate systematically to what extent integrated crop water management might contribute to closing the global food gap, constrained by the assumption that pressure on water resources and land does not increase. Using a process-based bio-/agrosphere model, we simulate the yield-increasing potential of elevated irrigation water productivity (including irrigation expansion with thus saved water) and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected future climate (from 20 climate models, with and without beneficial CO2 effects). Results show that irrigation efficiency improvements can save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an ‘ambitious’ scenario), and if rerouted to irrigate neighboring rainfed systems, can boost kcal production significantly (26% global increase). Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, the ambitious yet achievable integrated water management strategies explored in this study could increase global production by 41% and close the water-related yield gap by 62%. Unabated climate change will have adverse effects on crop yields in many regions, but improvements in water management as analyzed here can buffer such effects to a significant degree.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN 1748-9326 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM Approved no
Call Number MA @ admin @ Serial 4733
Permanent link to this record
 

 
Author Zimmermann, A.; Britz, W.
Title European farms’ participation in agri-environmental measures Type Journal Article
Year 2016 Publication Land Use Policy Abbreviated Journal Land Use Policy
Volume 50 Issue Pages 214-228
Keywords agri-environmental; CAP; farm; EU; estimation; protection scheme; conservation; programs; willingness; policy; perspective; adoption; ireland
Abstract Due to their diversity and voluntariness, agri-environmental measures (AEMs) are among the Common Agricultural Policy instruments that are most difficult to assess. We provide an EU-wide analysis of AEM adoption and farm’s total AEM support over total Utilised Agricultural Area using a Heckman sample selection approach and single farm data. Our analysis covers 22 Member States over the 2000-2009 period, assesses the entire portfolio of AEMs and focuses on the relationship between AEM participation and farming system. Results show that participation in AEMs is more likely in less intensive production systems, where, however, per committed hectare AEM premiums tend to be lower. Member States group into three categories: high/low intensity farming systems with low/high AEM enrollment rates, respectively, and large high diversity countries with medium AEM enrollment rates. (C) 2015 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN 0264-8377 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4711
Permanent link to this record