toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lindeskog, M.; Arneth, A.; Bondeau, A.; Waha, K.; Seaquist, J.; Olin, S.; Smith, B. url  doi
openurl 
  Title Implications of accounting for land use in simulations of ecosystem carbon cycling in Africa Type Journal Article
  Year 2013 Publication Earth System Dynamics Abbreviated Journal Earth System Dynamics  
  Volume 4 Issue 2 Pages 385-407  
  Keywords global vegetation model; sub-saharan africa; climate-change; yield gaps; co2; balance; dynamics; atmosphere; cover; variability  
  Abstract Dynamic global vegetation models (DGVMs) are important tools for modelling impacts of global change on ecosystem services. However, most models do not take full account of human land management and land use and land cover changes (LULCCs). We integrated croplands and pasture and their management and natural vegetation recovery and succession following cropland abandonment into the LPJ-GUESS DGVM. The revised model was applied to Africa as a case study to investigate the implications of accounting for land use on net ecosystem carbon balance (NECB) and the skill of the model in describing agricultural production and reproducing trends and patterns in vegetation structure and function. The seasonality of modelled monthly fraction of absorbed photosynthetically active radiation (FPAR) was shown to agree well with satellite-inferred normalised difference vegetation index (NDVI). In regions with a large proportion of cropland, the managed land addition improved the FPAR vs. NDVI fit significantly. Modelled 1991-1995 average yields for the seven most important African crops, representing potential optimal yields limited only by climate forcings, were generally higher than reported FAO yields by a factor of 2-6, similar to previous yield gap estimates. Modelled inter-annual yield variations during 1971-2005 generally agreed well with FAO statistics, especially in regions with pronounced climate seasonality. Modelled land-atmosphere carbon fluxes for Africa associated with land use change (0.07 PgC yr(-1) release to the atmosphere for the 1980s) agreed well with previous estimates. Cropland management options (residue removal, grass as cover crop) were shown to be important to the land-atmosphere carbon flux for the 20th century.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4979 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4494  
Permanent link to this record
 

 
Author Dass, P.; Müller, C.; Brovkin, V.; Cramer, W. url  doi
openurl 
  Title Can bioenergy cropping compensate high carbon emissions from large-scale deforestation of high latitudes Type Journal Article
  Year 2013 Publication Earth System Dynamics Abbreviated Journal Earth System Dynamics  
  Volume 4 Issue 2 Pages 409-424  
  Keywords land-use change; global vegetation model; soil carbon; climate-change; surface albedo; cover changes; snow cover; remind-r; forest; productivity  
  Abstract Numerous studies have concluded that deforestation of the high latitudes result in a global cooling. This is mainly because of the increased albedo of deforested land which dominates over other biogeophysical and biogeochemical mechanisms in the energy balance. This dominance, however, may be due to an underestimation of the biogeochemical response, as carbon emissions are typically at or below the lower end of estimates. Here, we use the dynamic global vegetation model LPJmL for a better estimate of the carbon cycle under such large-scale deforestation. These studies are purely theoretical in order to understand the role of vegetation in the energy balance and the earth system. They must not be mistaken as possible mitigation options, because of the devastating effects on pristine ecosystems. For realistic assumptions of land suitability, the total emissions computed in this study are higher than that of previous studies assessing the effects of boreal deforestation. The warming due to biogeochemical effects ranges from 0.12 to 0.32 degrees C, depending on the climate sensitivity. Using LPJmL to assess the mitigation potential of bioenergy plantations in the suitable areas of the deforested region, we find that the global biophysical bioenergy potential is 68.1 +/- 5.6 EJ yr(-1) of primary energy at the end of the 21st century in the most plausible scenario. The avoided combustion of fossil fuels over the time frame of this experiment would lead to further cooling. However, since the carbon debt caused by the cumulative emissions is not repaid by the end of the 21st century, the global temperatures would increase by 0.04 to 0.11 degrees C. The carbon dynamics in the high latitudes especially with respect to permafrost dynamics and long-term carbon losses, require additional attention in the role for the Earth’s carbon and energy budget.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4987 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4486  
Permanent link to this record
 

 
Author De Sanctis, G.; Roggero, P.P.; Seddaiu, G.; Orsini, R.; Porter, C.H.; Jones, J.W. url  doi
openurl 
  Title Long-term no tillage increased soil organic carbon content of rain-fed cereal systems in a Mediterranean area Type Journal Article
  Year 2012 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 40 Issue Pages 18-27  
  Keywords N fertilization; C dynamics; DSSAT; Wheat; Maize; Weed fallow; sandy loam soil; cropping systems; agricultural systems; climate-change; winter-wheat; sequestration; matter; model; fertilization; dynamics  
  Abstract The differential impact on soil organic carbon (SOC) of applying no tillage (NT) compared to conventional tillage (CT, i.e. mouldboard ploughing), along with three rates of nitrogen (N) fertilizer application (0,90 and 180 kg ha(-1) y(-1)), was studied under rain-fed Mediterranean conditions in a long-term experiment based on a durum wheat-maize rotation, in which crop residues were left on the soil (NT) or incorporated (CT). Observed SOC content following 8 and 12 years of continuous treatment application was significantly higher in the top 10 cm of the soil under NT than CT, but it was similar in the 10-40 cm layer. NT grain yields for both maize and durum wheat were below those attained under CT (on average 32% and 14% lower respectively) at a given rate of N fertilizer application. Soil, climate and crop data over 5 years were used to calibrate DSSAT model in order to simulate the impact of the different management practices over a 50-year period. Good agreement was obtained between observed and simulated values for crops grain yield, above-ground biomass and observed SOC values. Results from the simulations showed that under NT the weeds growing during the intercrop fallow period made a significant contribution to the observed SOC increase. When the contribution of the weed fallow was considered, NT significantly increased SOC in the top 40 cm of the soil at an average rate of 0.43, 0.31 and 0.03 t ha(-1) per year, respectively for 180,90 and 0 kg N ha(-1) year(-1), within the simulated 50 years. Under CT, a significant SOC increase was simulated under N180 and a significant decrease when no fertilizer was supplied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium article  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4469  
Permanent link to this record
 

 
Author Minet, J.; Laloy, E.; Tychon, B.; François, L. url  doi
openurl 
  Title Bayesian inversions of a dynamic vegetation model at four European grassland sites Type Journal Article
  Year 2015 Publication Biogeosciences Abbreviated Journal Biogeosciences  
  Volume 12 Issue 9 Pages 2809-2829  
  Keywords eddy-covariance data; terrestrial ecosystem model; bioclimatic affinity; groups; monte-carlo-simulation; dry-matter content; leaf-area; climate-change; stomatal conductance; parameter-estimation; plant  
  Abstract Eddy covariance data from four European grassland sites are used to probabilistically invert the CARAIB (CARbon Assimilation In the Biosphere) dynamic vegetation model (DVM) with 10 unknown parameters, using the DREAM((ZS)) (DiffeRential Evolution Adaptive Metropolis) Markov chain Monte Carlo (MCMC) sampler. We focus on comparing model inversions, considering both homoscedastic and heteroscedastic eddy covariance residual errors, with variances either fixed a priori or jointly inferred together with the model parameters. Agreements between measured and simulated data during calibration are comparable with previous studies, with root mean square errors (RMSEs) of simulated daily gross primary productivity (GPP), ecosystem respiration (RECO) and evapotranspiration (ET) ranging from 1.73 to 2.19, 1.04 to 1.56 g C m(-2) day(-1) and 0.50 to 1.28 mm day(-1), respectively. For the calibration period, using a homoscedastic eddy covariance residual error model resulted in a better agreement between measured and modelled data than using a heteroscedastic residual error model. However, a model validation experiment showed that CARAIB models calibrated considering heteroscedastic residual errors perform better. Posterior parameter distributions derived from using a heteroscedastic model of the residuals thus appear to be more robust. This is the case even though the classical linear heteroscedastic error model assumed herein did not fully remove heteroscedasticity of the GPP residuals. Despite the fact that the calibrated model is generally capable of fitting the data within measurement errors, systematic bias in the model simulations are observed. These are likely due to model inadequacies such as shortcomings in the photosynthesis modelling. Besides the residual error treatment, differences between model parameter posterior distributions among the four grassland sites are also investigated. It is shown that the marginal distributions of the specific leaf area and characteristic mortality time parameters can be explained by site-specific ecophysiological characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1726-4189 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4571  
Permanent link to this record
 

 
Author Van Oijen, M.; Höglind, M. doi  openurl
  Title Toward a Bayesian procedure for using process-based models in plant breeding, with application to ideotype design Type Journal Article
  Year 2016 Publication Euphytica Abbreviated Journal Euphytica  
  Volume 207 Issue 3 Pages 627-643  
  Keywords BASGRA; cold tolerance; genotype-environment interaction; plant breeding; process-based modelling; yield stability; grassland productivity; timothy regrowth; climate-change; water-deficit; forest models; late blight; leaf-area; calibration; growth; tolerance  
  Abstract Process-based grassland models (PBMs) simulate growth and development of vegetation over time. The models tend to have a large number of parameters that represent properties of the plants. To simulate different cultivars of the same species, different parameter values are required. Parameter differences may be interpreted as genetic variation for plant traits. Despite this natural connection between PBMs and plant genetics, there are only few examples of successful use of PBMs in plant breeding. Here we present a new procedure by which PBMs can help design ideotypes, i.e. virtual cultivars that optimally combine properties of existing cultivars. Ideotypes constitute selection targets for breeding. The procedure consists of four steps: (1) Bayesian calibration of model parameters using data from cultivar trials, (2) Estimating genetic variation for parameters from the combination of cultivar-specific calibrated parameter distributions, (3) Identifying parameter combinations that meet breeding objectives, (4) Translating model results to practice, i.e. interpreting parameters in terms of practical selection criteria. We show an application of the procedure to timothy (Phleum pratense L.) as grown in different regions of Norway.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-2336 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4820  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: