toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Trnka, M.; Feng, S.; Semenov, M.A.; Olesen, J.E.; Kersebaum, K.C.; Roetter, R.P.; Semeradova, D.; Klem, K.; Huang, W.; Ruiz-Ramos, M.; Hlavinka, P.; Meitner, J.; Balek, J.; Havlik, P.; Buntgen, U. doi  openurl
  Title Mitigation efforts will not fully alleviate the increase in water scarcity occurrence probability in wheat-producing areas Type Journal Article
  Year 2019 Publication Science Advances Abbreviated Journal Sci. Adv.  
  Volume 5 Issue 9 Pages eaau2406  
  Keywords climate-change impacts; sub-saharan africa; atmospheric co2; crop; yields; drought; agriculture; variability; irrigation; adaptation; carbon  
  Abstract Global warming is expected to increase the frequency and intensity of severe water scarcity (SWS) events, which negatively affect rain-fed crops such as wheat, a key source of calories and protein for humans. Here, we develop a method to simultaneously quantify SWS over the world’s entire wheat-growing area and calculate the probabilities of multiple/sequential SWS events for baseline and future climates. Our projections show that, without climate change mitigation (representative concentration pathway 8.5), up to 60% of the current wheat-growing area will face simultaneous SWS events by the end of this century, compared to 15% today. Climate change stabilization in line with the Paris Agreement would substantially reduce the negative effects, but they would still double between 2041 and 2070 compared to current conditions. Future assessments of production shocks in food security should explicitly include the risk of severe, prolonged, and near- simultaneous droughts across key world wheat-producing areas.  
  Address 2020-02-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5227  
Permanent link to this record
 

 
Author van Bussel, L.G.J.; Ewert, F.; Zhao, G.; Hoffmann, H.; Enders, A.; Wallach, D.; Asseng, S.; Baigorria, G.A.; Basso, B.; Biernath, C.; Cammarano, D.; Chryssanthacopoulos, J.; Constantin, J.; Elliott, J.; Glotter, M.; Heinlein, F.; Kersebaum, K.-C.; Klein, C.; Nendel, C.; Priesack, E.; Raynal, H.; Romero, C.C.; Rötter, R.P.; Specka, X.; Tao, F. url  doi
openurl 
  Title Spatial sampling of weather data for regional crop yield simulations Type Journal Article
  Year 2016 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 220 Issue Pages 101-115  
  Keywords Regional crop simulations; Winter wheat; Upscaling; Stratified sampling; Yield estimates; climate-change scenarios; water availability; growth simulation; potential impact; food-production; winter-wheat; model; resolution; systems; soil  
  Abstract Field-scale crop models are increasingly applied at spatio-temporal scales that range from regions to the globe and from decades up to 100 years. Sufficiently detailed data to capture the prevailing spatio-temporal heterogeneity in weather, soil, and management conditions as needed by crop models are rarely available. Effective sampling may overcome the problem of missing data but has rarely been investigated. In this study the effect of sampling weather data has been evaluated for simulating yields of winter wheat in a region in Germany over a 30-year period (1982-2011) using 12 process-based crop models. A stratified sampling was applied to compare the effect of different sizes of spatially sampled weather data (10, 30, 50,100, 500, 1000 and full coverage of 34,078 sampling points) on simulated wheat yields. Stratified sampling was further compared with random sampling. Possible interactions between sample size and crop model were evaluated. The results showed differences in simulated yields among crop models but all models reproduced well the pattern of the stratification. Importantly, the regional mean of simulated yields based on full coverage could already be reproduced by a small sample of 10 points. This was also true for reproducing the temporal variability in simulated yields but more sampling points (about 100) were required to accurately reproduce spatial yield variability. The number of sampling points can be smaller when a stratified sampling is applied as compared to a random sampling. However, differences between crop models were observed including some interaction between the effect of sampling on simulated yields and the model used. We concluded that stratified sampling can considerably reduce the number of required simulations. But, differences between crop models must be considered as the choice for a specific model can have larger effects on simulated yields than the sampling strategy. Assessing the impact of sampling soil and crop management data for regional simulations of crop yields is still needed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4673  
Permanent link to this record
 

 
Author van Bussel, L.G.J.; Stehfest, E.; Siebert, S.; Müller, C.; Ewert, F. url  doi
openurl 
  Title Simulation of the phenological development of wheat and maize at the global scale Type Journal Article
  Year 2015 Publication Global Ecology and Biogeography Abbreviated Journal Glob. Ecol. Biogeogr.  
  Volume 24 Issue 9 Pages 1018-1029  
  Keywords Agricultural management; crop calendars; cultivar; variety characteristics; global crop modelling; global harvest dates; phenology; climate-change; winter-wheat; annual crops; photoperiod sensitivity; geographical variation; temperature; responses; adaptation; cultivars; model  
  Abstract AimTo derive location-specific parameters that reflect the geographic differences among cultivars in vernalization requirements, sensitivity to day length (photoperiod) and temperature, which can be used to simulate the phenological development of wheat and maize at the global scale. LocationGlobal. Methods Based on crop calendar observations and literature describing the large-scale patterns of phenological characteristics of cultivars, we developed algorithms to compute location-specific parameters to represent this large-scale pattern. Vernalization requirements were related to the duration and coldness of winter, sensitivity to day length was assumed to be represented by the minimum and maximum day lengths occurring at a location, and sensitivity to temperature was related to temperature conditions during the vegetative development phase of the crop. Results Application of the derived location-specific parameters resulted in high agreement between simulated and observed lengths of the cropping period. Agreement was especially high for wheat, with mean absolute errors of less than 3 weeks. In the main maize cropping regions, cropping periods were over- and underestimated by 0.5-1.5 months. We also found that interannual variability in simulated wheat harvest dates was more realistic when accounting for photoperiod effects. Main conclusions The methodology presented here provides a good basis for modelling the phenological characteristics of cultivars at the global scale. We show that current global patterns of growing season length as described in cropping calendars can be largely reproduced by phenology models if location-specific parameters are derived from temperature and day length indicators. Growing seasons can be modelled more accurately for wheat than for maize, especially in warm regions. Our method for computing parameters for phenology models from temperature and day length offers opportunities to improve the simulation of crop productivity by crop simulation models developed for large spatial areas and for long-term climate impact projections that account for adaptation in the selection of varieties  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-822x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4729  
Permanent link to this record
 

 
Author Van Oijen, M.; Höglind, M. doi  openurl
  Title Toward a Bayesian procedure for using process-based models in plant breeding, with application to ideotype design Type Journal Article
  Year 2016 Publication Euphytica Abbreviated Journal Euphytica  
  Volume 207 Issue 3 Pages 627-643  
  Keywords BASGRA; cold tolerance; genotype-environment interaction; plant breeding; process-based modelling; yield stability; grassland productivity; timothy regrowth; climate-change; water-deficit; forest models; late blight; leaf-area; calibration; growth; tolerance  
  Abstract Process-based grassland models (PBMs) simulate growth and development of vegetation over time. The models tend to have a large number of parameters that represent properties of the plants. To simulate different cultivars of the same species, different parameter values are required. Parameter differences may be interpreted as genetic variation for plant traits. Despite this natural connection between PBMs and plant genetics, there are only few examples of successful use of PBMs in plant breeding. Here we present a new procedure by which PBMs can help design ideotypes, i.e. virtual cultivars that optimally combine properties of existing cultivars. Ideotypes constitute selection targets for breeding. The procedure consists of four steps: (1) Bayesian calibration of model parameters using data from cultivar trials, (2) Estimating genetic variation for parameters from the combination of cultivar-specific calibrated parameter distributions, (3) Identifying parameter combinations that meet breeding objectives, (4) Translating model results to practice, i.e. interpreting parameters in terms of practical selection criteria. We show an application of the procedure to timothy (Phleum pratense L.) as grown in different regions of Norway.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-2336 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4820  
Permanent link to this record
 

 
Author Ventrella, D.; Giglio, L.; Charfeddine, M.; Dalla Marta, A. openurl 
  Title Consumptive use of green and blue water for winter durum wheat cultivated in Southern Italy Type Journal Article
  Year 2015 Publication Italian Journal of Agrometeorology Abbreviated Journal Italian Journal of Agrometeorology  
  Volume 20 Issue 1 Pages 33-44  
  Keywords irrigation; water productivity; model simulation; climate change; climate-change scenarios; air co2 enrichment; impact; footprint; irrigation; simulation; yield; agriculture; variability; resources  
  Abstract In this study at the regional scale, the model DSSAT CERES-Wheat was applied in order to simulate the cultivation of winter durum wheat (WW) and to estimate the green water (GW) and the blue water (BW) through a dual-step approach (with and without supplemental irrigation). The model simulation covered a period of 30 years for three scenarios including a reference period and two future scenarios based on forecasted global average temperature increase of 2 and 5 degrees C. The GW and BW contribution for evapo transpiration requirement is presented and analyzed on a distributed scale related to the Puglia region (Southern Italy) characterized by high evaporative demand of the atmosphere. The GW component was dominant compared to BW, covering almost 90% of the ETc of WW Under a Baseline scenario the weight BW was 11%, slightly increased in the future scenarios. GW appeared dependent on the spatial and temporal distribution of rainfall during the crop cycle, and to the hydraulic characteristics of soil for each calculation unit. After considering the effects of climate change on irrigation requirement of WW we carried out an example of analysis in order to verify the economic benefit of supplemental irrigation for WW cultivation. The probability that irrigation generates a negative or zero income ranged between 55 and 60% and climate change did not impact the profitability of irrigation for WW as simulated for the economic and agro-pedoclimatic conditions of Puglia region considered in this study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4653  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: