toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Humblot, P.; Jayet, P.A.; Clerino, P.; Leconte-Demarsy, D.; Szopa, S.; Castell, J.F. doi  openurl
  Title Assessment of ozone impacts on farming systems: a bio-economic modeling approach applied to the widely diverse French case Type Journal Article
  Year 2013 Publication Ecological Economics Abbreviated Journal Ecol. Econ.  
  Volume 85 Issue Pages 50-58  
  Keywords ozone; bio-economic modeling; agricultural production; land use; greenhouse gas; carbon sequestration; abatement costs; climate-change; crops; agriculture; eu; emissions; benefits; level  
  Abstract As a result of anthropogenic activities, ozone is produced in the surface atmosphere, causing direct damage to plants and reducing crop yields. By combining a biophysical crop model with an economic supply model we were able to predict and quantify this effect at a fine spatial resolution. We applied our approach to the very varied French case and showed that ozone has significant productivity and land-use effects. A comparison of moderate and high ozone scenarios for 2030 shows that wheat production may decrease by more than 30% and barley production may increase by more than 14% as surface ozone concentration increases. These variations are due to the direct effect of ozone on yields as well as to modifications in land use caused by a shift toward more ozone-resistant crops: our study predicts a 16% increase in the barley-growing area and an equal decrease in the wheat-growing area. Moreover, mean agricultural gross margin losses can go as high as 2.5% depending on the ozone scenario, and can reach 7% in some particularly affected regions. A rise in ozone concentration was also associated with a reduction of agricultural greenhouse gas emissions of about 2%, as a result of decreased use of nitrogen fertilizers. One noteworthy result was that major impacts, including changes in land use, do not necessarily occur in ozone high concentration zones, and may strongly depend on farm systems and their adaptation capability. Our study suggests that policy makers should view ozone pollution as a major potential threat to agricultural yields. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8009 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4604  
Permanent link to this record
 

 
Author Milford, A.B.; Le Mouel, C.; Bodirsky, B.L.; Rolinski, S. doi  openurl
  Title Drivers of meat consumption Type Journal Article
  Year 2019 Publication Appetite Abbreviated Journal Appetite  
  Volume 141 Issue Pages Unsp 104313  
  Keywords Meat consumption; Nutrition transition; Climate change mitigation; Cross-country analysis; nutrition transition; food; sustainability; globalization; countries; future; health; income; price  
  Abstract Increasing global levels of meat consumption are a threat to the environment and to human health. To identify measures that may change consumption patterns towards more plant-based foods, it is necessary to improve our understanding of the causes behind the demand for meat. In this paper we use data from 137 different countries to identify and assess factors that influence meat consumption at the national level using a cross-country multivariate regression analysis. We specify either total meat or ruminant meat as the dependent variable and we consider a broad range of potential drivers of meat consumption. The combination of explanatory variables we use is new for this type of analysis. In addition, we estimate the relative importance of the different drivers. We find that income per capita followed by rate of urbanisation are the two most important drivers of total meat consumption per capita. Income per capita and natural endowment factors are major drivers of ruminant meat consumption per capita. Other drivers are Western culture, Muslim religion, female labour participation, economic and social globalisation and meat prices. The main identified drivers of meat demand are difficult to influence through direct policy intervention. Thus, acting indirectly on consumers’ preferences and consumption habits (for instance through information, education policy and increased availability of ready-made plant based products) could be of key importance for mitigating the rise of meat consumption per capita all over the world.  
  Address 2020-02-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0195-6663 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5224  
Permanent link to this record
 

 
Author Tao, F.; Palosuo, T.; Roetter, R.P.; Hernandez Diaz-Ambrona, C.G.; Ines Minguez, M.; Semenov, M.A.; Kersebaum, K.C.; Cammarano, D.; Specka, X.; Nendel, C.; Srivastava, A.K.; Ewert, F.; Padovan, G.; Ferrise, R.; Martre, P.; Rodriguez, L.; Ruiz-Ramos, M.; Gaiser, T.; Hohn, J.G.; Salo, T.; Dibari, C.; Schulman, A.H. doi  openurl
  Title Why do crop models diverge substantially in climate impact projections? A comprehensive analysis based on eight barley crop models Type Journal Article
  Year 2020 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 281 Issue Pages 107851  
  Keywords agriculture; climate change; crop growth simulation; impact; model; improvement; uncertainty; air CO2 enrichment; elevated CO2; wheat growth; nitrogen dynamics; simulation-models; field experiment; atmospheric CO2; rice phenology; temperature; uncertainty  
  Abstract Robust projections of climate impact on crop growth and productivity by crop models are key to designing effective adaptations to cope with future climate risk. However, current crop models diverge strongly in their climate impact projections. Previous studies tried to compare or improve crop models regarding the impact of one single climate variable. However, this approach is insufficient, considering that crop growth and yield are affected by the interactive impacts of multiple climate change factors and multiple interrelated biophysical processes. Here, a new comprehensive analysis was conducted to look holistically at the reasons why crop models diverge substantially in climate impact projections and to investigate which biophysical processes and knowledge gaps are key factors affecting this uncertainty and should be given the highest priorities for improvement. First, eight barley models and eight climate projections for the 2050s were applied to investigate the uncertainty from crop model structure in climate impact projections for barley growth and yield at two sites: Jokioinen, Finland (Boreal) and Lleida, Spain (Mediterranean). Sensitivity analyses were then conducted on the responses of major crop processes to major climatic variables including temperature, precipitation, irradiation, and CO2, as well as their interactions, for each of the eight crop models. The results showed that the temperature and CO2 relationships in the models were the major sources of the large discrepancies among the models in climate impact projections. In particular, the impacts of increases in temperature and CO2 on leaf area development were identified as the major causes for the large uncertainty in simulating changes in evapotranspiration, above-ground biomass, and grain yield. Our findings highlight that advancements in understanding the basic processes and thresholds by which climate warming and CO2 increases will affect leaf area development, crop evapotranspiration, photosynthesis, and grain formation in contrasting environments are needed for modeling their impacts.  
  Address 2020-06-08  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5232  
Permanent link to this record
 

 
Author Gomara, I.; Bellocchi, G.; Martin, R.; Rodriguez-Fonseca, B.; Ruiz-Ramos, M. doi  openurl
  Title Influence of climate variability on the potential forage production of a mown permanent grassland in the French Massif Central Type Journal Article
  Year 2020 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 280 Issue Pages 107768  
  Keywords climate variability; grasslands; potential yield; climate services; forage production forecasts; french massif central; pasture simulation-model; dry-matter production; atmospheric; circulation; crop yield; SST anomalies; maize yield; managed grasslands; storm track; ENSO; impacts  
  Abstract Climate Services (CS) provide support to decision makers across socio-economic sectors. In the agricultural sector, one of the most important CS applications is to provide timely and accurate yield forecasts based on climate prediction. In this study, the Pasture Simulation model (PaSim) was used to simulate, for the period 1959–2015, the forage production of a mown grassland system (Laqueuille, Massif Central of France) under different management conditions, with meteorological inputs extracted from the SAFRAN atmospheric database. The aim was to generate purely climate-dependent timeseries of optimal forage production, a variable that was maximized by brighter and warmer weather conditions at the grassland. A long-term increase was observed in simulated forage yield, with the 1995–2015 average being 29% higher than the 1959–1979 average. Such increase seems consistent with observed rising trends in temperature and CO2, and multi-decadal changes in incident solar radiation. At interannual timescales, sea surface temperature anomalies of the Mediterranean (MED), Tropical North Atlantic (TNA), equatorial Pacific (El Niño Southern Oscillation) and the North Atlantic Oscillation (NAO) index were found robustly correlated with annual forage yield values. Relying only on climatic predictors, we developed a stepwise statistical multi-regression model with leave-one-out cross-validation. Under specific management conditions (e.g., three annual cuts) and from one to five months in advance, the generated model successfully provided a p-value<0.01 in correlation (t-test), a root mean square error percentage (%RMSE) of 14.6% and a 71.43% hit rate predicting above/below average years in terms of forage yield collection. This is the first modeling study on the possible role of large-scale oceanic–atmospheric teleconnections in driving forage production in Europe. As such, it provides a useful springboard to implement a grassland seasonal forecasting system in this continent.  
  Address 2020-06-08  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5233  
Permanent link to this record
 

 
Author Montesino-San Martín, M.; Olesen, J.E.; Porter, J.R. doi  openurl
  Title A genotype, environment and management (GxExM) analysis of adaptation in winter wheat to climate change in Denmark Type Journal Article
  Year 2014 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 187 Issue Pages 1-13  
  Keywords Winter wheat; Climate change; Adaptation; Uncertainty; Europe; food security; model hadgem1; physical-properties; regional climate; change impacts; field-scale; land-use; yield; nitrogen; variability  
  Abstract Wheat yields in Europe have shown stagnating trends during the last two decades, partly attributed to climate change. Such developments challenge the needs for increased production, in particular at higher latitudes, to meet increasing global demands and expected productivity reductions at lower latitudes. Climate change projections from three General Circulation Models or GCMs (UKMO-HadGEM1, INM-GM3.0 and CSIRO-Mk3.1) for the A1FI SIZES emission scenario for 2000 to 2100 were downscaled at a northern latitude location (Foulum, Denmark) using LARS-WG5.3. The scenarios accounted for changes in temperature, precipitation and atmospheric CO2 concentration. In addition, three temperature-variability scenarios were included assuming different levels of decreased temperature variability in winter and increased in summer. Crop yield was simulated for the different climate change scenarios by a calibrated version of AFRCWHEAT2 to model several combinations of genotypes (varying in crop growth, development and tolerance to water and nitrogen scarcity) and management (sowing dates and nitrogen fertilization rate). The simulations showed a slight improvement of grain yields (0.3-1.2 Mg ha(-1)) in the medium-term (2030-2050), but not enough to cope with expected increases in demand for food and feed. Optimum management added up to 1.8 Mg ha(-1). Genetic modifications regarding winter wheat crop development exhibit the greatest sensitivity to climate and larger potential for improvement (+3.8 Mg ha(-1)). The results consistently points towards need for cultivars with a longer reproductive phases (2.9-7.5% per 1 degrees C) and lower photoperiod sensitivities. Due to the positive synergies between several genotypic characteristics, multiple-target breeding programmes would be necessary, possibly assisted by model-based assessments of optimal phenotypic characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4630  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: