toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Below, T.B.; Mutabazi, K.D.; Kirschke, D.; Franke, C.; Sieber, S.; Siebert, R.; Tscherning, K. url  doi
openurl 
  Title Can farmers’ adaptation to climate change be explained by socio-economic household-level variables Type Journal Article
  Year 2012 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 22 Issue 1 Pages 223-235  
  Keywords Sub-Saharan Africa; Tanzania; Adaptive capacity; Index; Vulnerability; Adaptation; adaptive capacity; environmental-change; south-africa; vulnerability; variability; resilience; tanzania; framework; drought; policy  
  Abstract A better understanding of processes that shape farmers’ adaptation to climate change is critical to identify vulnerable entities and to develop well-targeted adaptation policies. However, it is currently poorly understood what determines farmers’ adaptation and how to measure it. In this study, we develop an activity-based adaptation index (AAI) and explore the relationship between socioeconomic variables and farmers’ adaptation behavior by means of an explanatory factor analysis and a multiple linear regression model using latent variables. The model was tested in six villages situated in two administrative wards in the Morogoro region of Tanzania. The Mlali ward represents a system of relatively high agricultural potential, whereas the Gairo ward represents a system of low agricultural potential. A household survey, a rapid rural appraisal and, a stakeholder workshop were used for data collection. The data were analyzed using factor analysis, multiple linear regression, descriptive statistical methods and qualitative content analysis. The empirical results are discussed in the context of theoretical concepts of adaptation and the sustainable livelihood approach. We found that public investment in rural infrastructure, in the availability and technically efficient use of inputs, in a good education system that provides equal chances for women, and in the strengthening of social capital, agricultural extension and, microcredit services are the best means of improving the adaptation of the farmers from the six villages in Gairo and Mlali. We conclude that the newly developed AAI is a simple but promising way to capture the complexity of adaptation processes that addresses a number of shortcomings of previous index studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4467  
Permanent link to this record
 

 
Author (up) Castañeda-Vera, A.; Leffelaar, P.A.; Álvaro-Fuentes, J.; Cantero-Martínez, C.; Mínguez, M.I. url  doi
openurl 
  Title Selecting crop models for decision making in wheat insurance Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 68 Issue Pages 97-116  
  Keywords aquacrop; ceres-wheat; cropsyst; wofost; model choice; rainfed semi-arid areas; radiation use efficiency; water deficit; use efficiency; management-practices; farming systems; field-capacity; soil; yield; evaporation; photosynthesis; transpiration; irrigation  
  Abstract In crop insurance, the accuracy with which the insurer quantifies the actual risk is highly dependent on the availability on actual yield data. Crop models might be valuable tools to generate data on expected yields for risk assessment when no historical records are available. However, selecting a crop model for a specific objective, location and implementation scale is a difficult task. A look inside the different crop and soil modules to understand how outputs are obtained might facilitate model choice. The objectives of this paper were (i) to assess the usefulness of crop models to be used within a crop insurance analysis and design and (ii) to select the most suitable crop model for drought risk assessment in semi-arid regions in Spain. For that purpose first, a pre-selection of crop models simulating wheat yield under rainfed growing conditions at the field scale was made, and second, four selected models (Aquacrop, CERES-Wheat, CropSyst and WOFOST) were compared in terms of modelling approaches, process descriptions and model outputs. Outputs of the four models for the simulation of winter wheat growth are comparable when water is not limiting, but differences are larger when simulating yields under rainfed conditions. These differences in rainfed yields are mainly related to the dissimilar simulated soil water availability and the assumed linkages with dry matter formation. We concluded that for the simulation of winter wheat growth at field scale in such semi-arid conditions, CERES-Wheat and CropSyst are preferred. WOFOST is a satisfactory compromise between data availability and complexity when detail data on soil is limited. Aquacrop integrates physiological processes in some representative parameters, thus diminishing the number of input parameters, what is seen as an advantage when observed data is scarce. However, the high sensitivity of this model to low water availability limits its use in the region considered. Contrary to the use of ensembles of crop models, we endorse that efforts be concentrated on selecting or rebuilding a model that includes approaches that better describe the agronomic conditions of the regions in which they will be applied. The use of such complex methodologies as crop models is associated with numerous sources of uncertainty, although these models are the best tools available to get insight in these complex agronomic systems. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4710  
Permanent link to this record
 

 
Author (up) Cortignani, R.; Dono, G. doi  openurl
  Title Agricultural policy and climate change: An integrated assessment of the impacts on an agricultural area of Southern Italy Type Journal Article
  Year 2018 Publication Environmental Science and Policy Abbreviated Journal Environ. Sci. Pol.  
  Volume 81 Issue Pages 26-35  
  Keywords Agricultural policy; Climate change; Bio-economic model; Integrated Assessment; Temperature-Humidity Index; Adaptation Pathways; Maximum-Entropy; Model; Cap; Uncertainty; Irrigation; Management; Scenarios; Systems  
  Abstract The European Union (EU) has recently reformed its Common Agricultural Policy (CAP) and, in parallel, has completely abolished the production quotas for milk. These changes will have important consequences for the use of land, of inputs (i.e., water and chemicals) and on the economic performance of rural areas. It is of interest to evaluate the integrated impact of these modifications and of climate change (CC), since the latter could neutralize or reverse some desired effects of the former. For this purpose, this paper evaluates the potential impact of the abolition of milk quotas, as well as of the reform of the first pillar of CAP in two different climate scenarios (present and near future). A bio-economic model simulates the possible adaptation of various farm types in an agricultural area of Southern Italy to these changes, given the available technological options and current market conditions. The main results show that the considered policy changes have small positive impacts on economic and environmental factors of the study area. However, some farm types are more affected. CC can effectively attenuate or reverse several of those effects, especially in some farm types. These results can inform the planning of future changes to the CAP, which will have to act in the context of deeper climate alteration.  
  Address 2018-03-02  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1462-9011 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5193  
Permanent link to this record
 

 
Author (up) Dáder, B.; Gwynn-Jones, D.; Moreno, A.; Winters, A.; Fereres, A. doi  openurl
  Title Impact of UV-A radiation on the performance of aphids and whiteflies and on the leaf chemistry of their host plants Type Journal Article
  Year 2014 Publication Journal of Photochemistry and Photobiology B: Biology Abbreviated Journal J. Photochem. Photobiol. B  
  Volume 138 Issue Pages 307-316  
  Keywords Amino Acids/analysis; Animals; Aphids/*radiation effects; Capsicum/metabolism/parasitology/radiation effects; Carbohydrates/analysis; Chromatography, High Pressure Liquid; Female; Fertility/radiation effects; Hemiptera/*radiation effects; Mass Spectrometry; Phenols/analysis/chemistry; Plant Leaves/metabolism/parasitology/radiation effects; Plants/parasitology/*radiation effects; Proteins/analysis; Solanum melongena/metabolism/parasitology/radiation effects; Time Factors; *Ultraviolet Rays; Eggplant; Insect pests; Pepper; Plant-insect interactions; UV-blocking covers  
  Abstract Ultraviolet (UV) radiation directly regulates a multitude of herbivore life processes, in addition to indirectly affecting insect success via changes in plant chemistry and morphogenesis. Here we looked at plant and insect (aphid and whitefly) exposure to supplemental UV-A radiation in the glasshouse environment and investigated effects on insect population growth. Glasshouse grown peppers and eggplants were grown from seed inside cages covered by novel plastic filters, one transparent and the other opaque to UV-A radiation. At a 10-true leaf stage for peppers (53 days) and 4-true leaf stage for eggplants (34 days), plants were harvested for chemical analysis and infested by aphids and whiteflies, respectively. Clip-cages were used to introduce and monitor the insect fitness and populations of the pests studied. Insect pre-reproductive period, fecundity, fertility and intrinsic rate of natural increase were assessed. Crop growth was monitored weekly for 7 and 12 weeks throughout the crop cycle of peppers and eggplants, respectively. At the end of the insect fitness experiment, plants were harvested (68 days and 18-true leaf stage for peppers, and 104 days and 12-true leaf stage for eggplants) and leaves analysed for secondary metabolites, soluble carbohydrates, amino acids, total proteins and photosynthetic pigments. Our results demonstrate for the first time, that UV-A modulates plant chemistry with implications for insect pests. Both plant species responded directly to UV-A by producing shorter stems but this effect was only significant in pepper whilst UV-A did not affect the leaf area of either species. Importantly, in pepper, the UV-A treated plants contained higher contents of secondary metabolites, leaf soluble carbohydrates, free amino acids and total content of protein. Such changes in tissue chemistry may have indirectly promoted aphid performance. For eggplants, chlorophylls a and b, and carotenoid levels decreased with supplemental UV-A over the entire crop cycle but UV-A exposure did not affect leaf secondary metabolites. However, exposure to supplemental UV-A had a detrimental effect on whitefly development, fecundity and fertility presumably not mediated by plant cues as compounds implied in pest nutrition – proteins and sugars – were unaltered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1011-1344 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4517  
Permanent link to this record
 

 
Author (up) De Pascale, S.; Orsini, F.; Caputo, R.; Palermo, M.A.; Barbieri, G.; Maggio, A. doi  openurl
  Title Seasonal and multiannual effects of salinisation on tomato yield and fruit quality Type Journal Article
  Year 2012 Publication Functional Plant Biology Abbreviated Journal Functional Plant Biology  
  Volume 39 Issue 8 Pages 689-698  
  Keywords fruit ions concentration; fruit lipophilic and hydrophilic antioxidant; capacities; leaf water potentials; leaf stomatal conductance; short- and; long-term salinisation; salinity tolerance; water-stress; antioxidant activity; irrigation; growth; plants; soils; carotenoids; responses; crops  
  Abstract The effects of short-and long-term salinisation were studied by comparing tomato growth on a soil exposed to one-season salinisation (short term) vs growth on a soil exposed to >20 years salinisation (long term). Remarkable differences were associated to substantial modifications of the soil physical-chemical characteristics in the root zone, including deteriorated structure, reduced infiltration properties and increased pH. Fresh yield, fruit number and fruit weight were similarly affected by short-and long-term salinisation. In contrast, the marketable yield was significantly lower in the long-term salinised soil-a response that was also associated to nutritional imbalance (mainly referred to P and K). As reported for plants growing under oxygen deprivation stress, the antioxidant capacity of the water soluble fraction of salinised tomato fruits was enhanced by short-term salinisation, also. Overall, long-term salinisation may cause physiological imbalances and yield reductions that cannot be solely attributed to hyperosmotic stress and ionic toxicity. Therefore, the ability of plants to cope with nutritional deficiency and withstand high pH and anoxia may be important traits that should be considered to improve plant tolerance to long-term salinised soils.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1445-4408 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4583  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: