toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Molina-Herrera, S.; Haas, E.; Klatt, S.; Kraus, D.; Augustin, J.; Magliulo, V.; Tallec, T.; Ceschia, E.; Ammann, C.; Loubet, B.; Skiba, U.; Jones, S.; Brümmer, C.; Butterbach-Bahl, K.; Kiese, R. doi  openurl
  Title A modeling study on mitigation of N2O emissions and NO3 leaching at different agricultural sites across Europe using LandscapeDNDC Type Journal Article
  Year 2016 Publication Science of the Total Environment Abbreviated Journal (down) Science of the Total Environment  
  Volume 553 Issue Pages 128-140  
  Keywords Agricultural management; LandscapeDNDC; Mitigation; N₂O emission; NO₃ leaching; Optimization  
  Abstract The identification of site-specific agricultural management practices in order to maximize yield while minimizing environmental nitrogen losses remains in the center of environmental pollution research. Here, we used the biogeochemical model LandscapeDNDC to explore different agricultural practices with regard to their potential to reduce soil N2O emissions and NO3 leaching while maintaining yields. In a first step, the model was tested against observations of N2O emissions, NO3 leaching, soil micrometeorology as well as crop growth for eight European cropland and grassland sites. Across sites, LandscapeDNDC predicts very well mean N2O emissions (r(2)=0.99) and simulates the magnitude and general temporal dynamics of soil inorganic nitrogen pools. For the assessment of site-specific mitigation potentials of environmental nitrogen losses a Monte Carlo optimization technique considering different agricultural management options (i.e., timing of planting, harvest and fertilization, amount of applied fertilizer as well as residue management) was used. The identified optimized field management practices reduce N2O emissions and NO3 leaching from croplands on average by 21% and 31%, respectively. Likewise, average reductions of 55% for N2O emissions and 16% for NO3 leaching are estimated for grasslands. For mitigating environmental loss – while maintaining yield levels – it was most important to reduce fertilizer application rates by in average 10%. Our analyses indicate that yield scaled N2O emissions and NO3 leaching indicate possible improvements of nitrogen use efficiencies in European farming systems. Moreover, the applied optimization approach can be used also in a prognostic way to predict optimal timings and fertilization options (rates and splitting) upon accurate weather forecasts combined with the knowledge of modeled soil nutrient availability and plant nitrogen demand.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4727  
Permanent link to this record
 

 
Author Kim, Y.; Seo, Y.; Kraus, D.; Klatt, S.; Haas, E.; Tenhunen, J.; Kiese, R. doi  openurl
  Title Estimation and mitigation of N₂O emission and nitrate leaching from intensive crop cultivation in the Haean catchment, South Korea Type Journal Article
  Year 2015 Publication Science of the Total Environment Abbreviated Journal (down) Science of the Total Environment  
  Volume 529 Issue Pages 40-53  
  Keywords Agriculture; Air Pollutants/*analysis; Air Pollution/prevention & control/*statistics & numerical data; Crops, Agricultural; *Environmental Monitoring; Fertilizers; Nitrogen Dioxide/*analysis; Republic of Korea; LandscapeDNDC; Mitigation strategies; N2O; Nitrate leaching; Water quality  
  Abstract Considering intensive agricultural management practices and environmental conditions, the LandscapeDNDC model was applied for simulation of yields, N2O emission and nitrate leaching from major upland crops and temperate deciduous forest of the Haean catchment, South Korea. Fertilization rates were high (up to 314 kg N ha(-1) year(-1)) and resulted in simulated direct N2O emissions from potato, radish, soybean and cabbage fields of 1.9 and 2.1 kg N ha(-1) year(-1) in 2009 and 2010, respectively. Nitrate leaching was identified as the dominant pathway of N losses in the Haean catchment with mean annual rates of 112.2 and 125.4 kg N ha(-1) year(-1), causing threats to water quality and leading to substantial indirect N2O emissions of 0.84 and 0.94 kg N ha(-1) year(-1) in 2009 and 2010 as estimates by applying the IPCC EF5. Simulated N2O emissions from temperate deciduous forest were low (approx. 0.50 kg N ha(-1) year(-1)) and predicted nitrate leaching rates were even negligible (≤0.01 kg N ha(-1) year(-1)). On catchment scale more than 50% of the total N2O emissions and up to 75% of nitrate leaching originated from fertilized upland fields, only covering 24% of the catchment area. Taking into account area coverage of simulated upland crops and other land uses these numbers agree well with nitrate loads calculated from discharge and concentration measurements at the catchment outlet. The change of current agricultural management practices showed a high potential of reducing N2O emission and nitrate leaching while maintaining current crop yields. Reducing (39%) and splitting N fertilizer application into 3 times was most effective and lead to about 54% and 77% reducing of N2O emission and nitrate leaching from the Haean catchment, the latter potentially contributing to improved water quality in the Soyang River Dam, which is the major source of drinking water for metropolitan residents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4684  
Permanent link to this record
 

 
Author Holman, I.P.; Brown, C.; Carter, T.R.; Harrison, P.A.; Rounsevell, M. doi  openurl
  Title Improving the representation of adaptation in climate change impact models Type Journal Article
  Year 2019 Publication Regional Environmental Change Abbreviated Journal (down) Reg. Environ. Change  
  Volume 19 Issue 3 Pages 711-721  
  Keywords Adaptive capacity; Limits; Water; Land; Decision making; Integrated assessment; Land-Cover Change; Global Change; River-Basin; Integrated Assessment; Adaptive Capacity; Vulnerability; Variability; Precautionary; Agriculture; Management  
  Abstract Climate change adaptation is a complex human process, framed by uncertainties and constraints, which is difficult to capture in existing assessment models. Attempts to improve model representations are hampered by a shortage of systematic descriptions of adaptation processes and their relevance to models. This paper reviews the scientific literature to investigate conceptualisations and models of climate change adaptation, and the ways in which representation of adaptation in models can be improved. The review shows that real-world adaptive responses can be differentiated along a number of dimensions including intent or purpose, timescale, spatial scale, beneficiaries and providers, type of action, and sector. However, models of climate change consequences for land use and water management currently provide poor coverage of these dimensions, instead modelling adaptation in an artificial and subjective manner. While different modelling approaches do capture distinct aspects of the adaptive process, they have done so in relative isolation, without producing improved unified representations. Furthermore, adaptation is often assumed to be objective, effective and consistent through time, with only a minority of models taking account of the human decisions underpinning the choice of adaptation measures (14%), the triggers that motivate actions (38%) or the time-lags and constraints that may limit their uptake and effectiveness (14%). No models included adaptation to take advantage of beneficial opportunities of climate change. Based on these insights, transferable recommendations are made on directions for future model development that may enhance realism within models, while also advancing our understanding of the processes and effectiveness of adaptation to a changing climate.  
  Address 2019-04-27  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5220  
Permanent link to this record
 

 
Author Kraus, D.; Weller, S.; Klatt, S.; Haas, E.; Wassmann, R.; Kiese, R.; Butterbach-Bahl, K. url  doi
openurl 
  Title A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems Type Journal Article
  Year 2015 Publication Plant and Soil Abbreviated Journal (down) Plant Soil  
  Volume 386 Issue 1-2 Pages 125-149  
  Keywords methane; nitrous oxide; paddy rice; maize; model; nitrous-oxide emissions; process-based model; methane transport capacity; process-oriented model; pnet-n-dndc; forest soils; paddy soils; sensitivity-analysis; residue management; organic-matter  
  Abstract Replacing paddy rice by upland systems such as maize cultivation is an on-going trend in SE Asia caused by increasing water scarcity and higher demand for meat. How such land management changes will feedback on soil C and N cycles and soil greenhouse gas emissions is not well understood at present. A new LandscapeDNDC biogeochemical module was developed that allows the effect of land management changes on soil C and N cycle to be simulated. The new module is applied in combination with further modules simulating microclimate and crop growth and evaluated against observations from field experiments. The model simulations agree well with observed dynamics of CH (4) emissions in paddy rice depending on changes in climatic conditions and agricultural management. Magnitude and peak emission periods of N (2) O from maize cultivation are simulated correctly, though there are still deficits in reproducing day-to-day dynamics. These shortcomings are most likely related to simulated soil hydrology and may only be resolved if LandscapeDNDC is coupled to more complex hydrological models. LandscapeDNDC allows for simulation of changing land management practices in SE Asia. The possibility to couple LandscapeDNDC to more complex hydrological models is a feature needed to better understand related effects on soil-atmosphere-hydrosphere interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0032-079x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4530  
Permanent link to this record
 

 
Author Zimmermann, A.; Britz, W. url  doi
openurl 
  Title European farms’ participation in agri-environmental measures Type Journal Article
  Year 2016 Publication Land Use Policy Abbreviated Journal (down) Land Use Policy  
  Volume 50 Issue Pages 214-228  
  Keywords agri-environmental; CAP; farm; EU; estimation; protection scheme; conservation; programs; willingness; policy; perspective; adoption; ireland  
  Abstract Due to their diversity and voluntariness, agri-environmental measures (AEMs) are among the Common Agricultural Policy instruments that are most difficult to assess. We provide an EU-wide analysis of AEM adoption and farm’s total AEM support over total Utilised Agricultural Area using a Heckman sample selection approach and single farm data. Our analysis covers 22 Member States over the 2000-2009 period, assesses the entire portfolio of AEMs and focuses on the relationship between AEM participation and farming system. Results show that participation in AEMs is more likely in less intensive production systems, where, however, per committed hectare AEM premiums tend to be lower. Member States group into three categories: high/low intensity farming systems with low/high AEM enrollment rates, respectively, and large high diversity countries with medium AEM enrollment rates. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-8377 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4711  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: