toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Foyer, C.H.; Siddique, K.H.M.; Tai, A.P.K.; Anders, S.; Fodor, N.; Wong, F.-L.; Ludidi, N.; Chapman, M.A.; Ferguson, B.J.; Considine, M.J.; Zabel, F.; Prasad, P.V.V.; Varshney, R.K.; Nguyen, H.T.; Lam, H.-M. doi  openurl
  Title Modelling predicts that soybean is poised to dominate crop production across Africa Type Journal Article
  Year 2019 Publication Plant Cell and Environment Abbreviated Journal Plant Cell Environ.  
  Volume 42 Issue 1 Pages 373-385  
  Keywords Climate-Change; Food Security; Sustainable Intensification; Smallholder; Farmers; Nitrogen-Fixation; Yield; Adaptation; Diversity; Impact; CO2  
  Abstract The superior agronomic and human nutritional properties of grain legumes (pulses) make them an ideal foundation for future sustainable agriculture. Legume-based farming is particularly important in Africa, where small-scale agricultural systems dominate the food production landscape. Legumes provide an inexpensive source of protein and nutrients to African households as well as natural fertilization for the soil. Although the consumption of traditionally grown legumes has started to decline, the production of soybeans (Glycine max Merr.) is spreading fast, especially across southern Africa. Predictions of future land-use allocation and production show that the soybean is poised to dominate future production across Africa. Land use models project an expansion of harvest area, whereas crop models project possible yield increases. Moreover, a seed change in farming strategy is underway. This is being driven largely by the combined cash crop value of products such as oils and the high nutritional benefits of soybean as an animal feed. Intensification of soybean production has the potential to reduce the dependence of Africa on soybean imports. However, a successful “soybean bonanza” across Africa necessitates an intensive research, development, extension, and policy agenda to ensure that soybean genetic improvements and production technology meet future demands for sustainable production.  
  Address 2019-01-10  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-7791 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5215  
Permanent link to this record
 

 
Author Bai, H.; Tao, F. doi  openurl
  Title Sustainable intensification options to improve yield potential and ecoefficiency for rice-wheat rotation system in China Type Journal Article
  Year 2017 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 211 Issue Pages 89-105  
  Keywords Adaptation; Agro-ecosystem; Climate smart agriculture; Impacts; Sustainable development; Yield gap; Past 3 Decades; Climate-Change; Winter-Wheat; Agricultural Systems; Cropping Systems; High-Temperature; Plain; Management; Cultivars; Maize  
  Abstract Agricultural production systems are facing the challenges of increasing food production while reducing environmental cost, particularly in China. To improve yield potential and eco-efficiency simultaneously for the rice-wheat rotation system in China, we investigated changes in potential yields and yield gaps based on the field experiment data from 1981 to 2009 at four representative agro-meteorological experiment stations, along with the Agricultural Production System Simulator (APSIM) rice-wheat model. We further optimized crop cultivar and sowing/transplanting date, and investigated crop yield, water and nitrogen use efficiency, and environment impact of the rice-wheat rotation system in response to water and nitrogen supply. We found that the yield gaps between potential yields and farmer’s yields were about 8101 kg/ha or 45.3% of the potential yield, which had been shrinking from 1981 to 2009. To improve yield potentials and eco-efficiency, the cultivars of rice and wheat that properly increase both radiation use efficiency and grain weight are promising. Rice cultivars breeding need to maintain the length of panicle development and reproductive phase. High-yielding wheat cultivars are characterized by medium vernalization sensitivity, low photoperiod sensitivity and short length of floral initiation phase. Proper shift in sowing date can alleviate the negative effect of climate risk. Intermittent irrigation scheme (irrigate until surface soil saturated when average water content of surface soil is < 50% of saturated water content) for rice, together with nitrogen application rate of 390-420 kg N/ha (180-210 kg N/ha for rice and 210 kg N/ha for wheat), is suggested for the rice-wheat rotation system to maintain high yield with high resource use efficiency. This suggested nitrogen application rates are lower than those currently used by many local farmers. Our findings are useful to improve yield potential and eco-efficiency for the rice-wheat rotation system in China. Furthermore, this study demonstrates an effective approach with crop modelling to design fanning system for sustainable intensification, which can be adapted to other farming systems and regions.  
  Address 2017-08-28  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5174  
Permanent link to this record
 

 
Author Tao, F.; Roetter, R.P.; Palosuo, T.; Diaz-Ambrona, C.G.H.; Ines Minguez, M.; Semenov, M.A.; Kersebaum, K.C.; Nendel, C.; Cammarano, D.; Hoffmann, H.; Ewert, F.; Dambreville, A.; Martre, P.; Rodriguez, L.; Ruiz-Ramos, M.; Gaiser, T.; Hohn, J.G.; Salo, T.; Ferrise, R.; Bindi, M.; Schulman, A.H. doi  openurl
  Title Designing future barley ideotypes using a crop model ensemble Type Journal Article
  Year 2017 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.  
  Volume 82 Issue Pages 144-162  
  Keywords Water-Use Efficiency; Climate-Change; Nitrogen Dynamics; Systems; Simulation; Wheat Cultivars; Grain Weight; Yield; Growth; Fertilization; Adaptation; Adaptation; Breeding; Climate change; Crop simulation models; Impact; Genotype; Genetic traits  
  Abstract Climate change and its associated higher frequency and severity of adverse weather events require genotypic adaptation. Process-based ecophysiological modelling offers a powerful means to better target and accelerate development of new crop cultivars. Barley (Hordeum vulgare L) is an important crop throughout the world, and a good model for study of the genetics of stress adaptation because many quantitative trait loci and candidate genes for biotic and abiotic stress tolerance have been identified in it. Here, we developed a new approach to design future crop ideotypes using an ensemble of eight barley simulation models (i.e. APSIM, CropSyst, HERMES, MCWLA, MONICA, SIMPLACE, Sirius Quality, and WOFOST), and applied it to design climate-resilient barley ideotypes for Boreal and Mediterranean climatic zones in Europe. The results showed that specific barley genotypes, represented by sets of cultivar parameters in the crop models, could be promising under future climate change conditions, resulting in increased yields and low inter-annual yield variability. In contrast, other genotypes could result in substantial yield declines. The most favorable climate-zone-specific barley ideotypes were further proposed, having combinations of several key genetic traits in terms of phenology, leaf growth, photosynthesis, drought tolerance, and grain formation. For both Boreal and Mediterranean climatic zones, barley ideotypes under future climatic conditions should have a longer reproductive growing period, lower leaf senescence rate, larger radiation use efficiency or maximum assimilation rate, and higher drought tolerance. Such characteristics can produce substantial positive impacts on yields under contrasting conditions. Moreover, barley ideotypes should have a low photoperiod and high vernalization sensitivity for the Boreal climatic zone; for the Mediterranean, in contrast, it should have a low photoperiod and low vernalization sensitivity. The drought-tolerance trait is more beneficial for the Mediterranean than for the Boreal climatic zone. Our study demonstrates a sound approach to design future barley ideotypes based on an ensemble of well-tested, diverse crop models and on integration of knowledge from multiple disciplines. The robustness of model-aided ideotypes design can be further enhanced by continuously improving crop models and enhancing information exchange between modellers, agro-meteorologists, geneticists, physiologists, and plant breeders. (C) 2016 Elsevier B.V. All rights reserved.  
  Address 2017-01-20  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_MACSUR Approved no  
  Call Number MA @ admin @ Serial 4935  
Permanent link to this record
 

 
Author Fronzek, S.; Pirttioja, N.; Carter, T.R.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.-F.; Dumont, B.; Ewert, F.; Ferrise, R.; Francois, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.C.; Kollas, C.; Krzyszczaki, J.; Lorite, I.J.; Minet, J.; Ines Minguez, M.; Montesino, M.; Moriondo, M.; Mueller, C.; Nendel, C.; Ozturk, I.; Perego, A.; Rodriguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rotter, R.P. doi  openurl
  Title Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change Type Journal Article
  Year 2018 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 159 Issue Pages 209-224  
  Keywords Classification; Climate change; Crop model; Ensemble; Sensitivity analysis; Wheat; Climate-Change; Crop Models; Probabilistic Assessment; Simulating; Impacts; British Catchments; Uncertainty; Europe; Productivity; Calibration; Adaptation  
  Abstract Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (-2 to +9 degrees C) and precipitation (-50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.  
  Address 2018-01-25  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5186  
Permanent link to this record
 

 
Author Zimmermann, A.; Webber, H.; Zhao, G.; Ewert, F.; Kros, J.; Wolf, J.; Britz, W.; de Vries, W. doi  openurl
  Title Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements Type Journal Article
  Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 157 Issue Pages 81-92  
  Keywords Integrated assessment; Crop management; Climate change; Europe; INTEGRATED ASSESSMENT; EUROPEAN AGRICULTURE; FOOD SECURITY; HEAT-STRESS; ADAPTATION; SYSTEMS; TEMPERATURE; SCENARIOS; WHEAT; PRODUCTIVITY; Vries W., 2011, ENVIRONMENTAL POLLUTION, V159, P3254  
  Abstract Impacts of climate change on European agricultural production, land use and the environment depend on its impact on crop yields. However, many impact studies assume that crop management remains unchanged in future scenarios, while farmers may adapt their sowing dates and cultivar thermal time requirements to minimize yield losses or realize yield gains. The main objective of this study was to investigate the sensitivity of climate change impacts on European crop yields, land use, production and environmental variables to adaptations in crops sowing dates and varieties’ thermal time requirements. A crop, economic and environmental model were coupled in an integrated assessment modelling approach for six important crops, for 27 countries of the European Union (EU27) to assess results of three SRES climate change scenarios to 2050. Crop yields under climate change were simulated considering three different management cases; (i) no change in crop management from baseline conditions (NoAd), (ii) adaptation of sowing date and thermal time requirements to give highest yields to 2050 (Opt) and (iii) a more conservative adaptation of sowing date and thermal time requirements (Act). Averaged across EU27, relative changes in water-limited crop yields due to climate change and increased CO2 varied between -6 and + 21% considering NoAd management, whereas impacts with Opt management varied between + 12 and + 53%, and those under Act management between 2 and + 27%. However, relative yield increases under climate change increased to + 17 and + 51% when technology progress was also considered. Importantly, the sensitivity to crop management assumptions of land use, production and environmental impacts were less pronounced than for crop yields due to the influence of corresponding market, farm resource and land allocation adjustments along the model chain acting via economic optimization of yields. We conclude that assumptions about crop sowing dates and thermal time requirements affect impact variables but to a different extent and generally decreasing for variables affected by economic drivers.  
  Address 2017-11-02  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5178  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: