|   | 
Details
   web
Records
Author Holman, I.P.; Brown, C.; Janes, V.; Sandars, D.
Title Can we be certain about future land use change in Europe? A multi-scenario, integrated-assessment analysis Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 151 Issue Pages 126-135
Keywords Climate change, Socio-economic change, Impacts, Integrated assessment, Uncertainty; Climate-Change Impacts; Water-Based Sectors; North-West England; Socioeconomic Change; Change Vulnerability; East-Anglia; Adaptation; Policy; Uncertainties; Agriculture
Abstract The global land system is facing unprecedented pressures from growing human populations and climatic change. Understanding the effects these pressures may have is necessary to designing land management strategies that ensure food security, ecosystem service provision and successful climate mitigation and adaptation. However, the number of complex, interacting effects involved makes any complete understanding very difficult to achieve. Nevertheless, the recent development of integrated modelling frameworks allows for the exploration of the co-development of human and natural systems under scenarios of global change, potentially illuminating the main drivers and processes in future land system change. Here, we use one such integrated modelling framework (the CLIMSAVE Integrated Assessment Platform) to investigate the range of projected outcomes in the European land system across climatic and socio-economic scenarios for the 2050s. We find substantial consistency in locations and types of change even under the most divergent conditions, with results suggesting that climate change alone will lead to a contraction in the agricultural and forest area within Europe, particularly in southern Europe. This is partly offset by the introduction of socioeconomic changes that change both the demand for agricultural production, through changing food demand and net imports, and the efficiency of agricultural production. Simulated extensification and abandonment in the Mediterranean region is driven by future decreases in the relative profitability of the agricultural sector in southern Europe, owing to decreased productivity as a consequence of increased heat and drought stress and reduced irrigation water availability. The very low likelihood (<33% probability) that current land use proportions in many parts of Europe will remain unchanged suggests that future policy should seek to promote and support the multifunctional role of agriculture and forests in different European regions, rather than focusing on increased productivity as a route to agricultural and forestry viability.
Address 2017-02-23
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LiveM, TradeM, ft_MACSUR Approved no
Call Number MA @ admin @ Serial 4937
Permanent link to this record
 

 
Author Rusu, T.; Coste, C.L.; Moraru, P.I.; Szajdak, L.W.; Pop, A.I.; Duda, B.M.
Title Impact of climate change on agro-climatic indicators and agricultural lands in the Transylvanian Plain between 2008-2014 Type Journal Article
Year 2017 Publication Carpathian Journal of Earth and Environmental Sciences Abbreviated Journal Carpathian Journal of Earth and Environmental Sciences
Volume 12 Issue 1 Pages 23-34
Keywords climate change; adaptation technologies; Transylvanian Plain
Abstract Integrated conservation and management of agricultural areas affected by the current global warming represents a priority at international level following the implementation of the principles of sustainable agriculture and adaptation measures. Transylvanian Plain (TP), with an area of 395,616 ha is of great agricultural importance for Romania, but with an afforestation degree of only 6.8% and numerous degradation phenomena of farmland, it has the lowest degree of sustainability to climate change. Monitoring of agro-climatic indicators and their evolution in between 2008-2014 and the analysis of the obtained data underlie the technological development of recommendations tailored to current favorable conditions for the main crops. Results obtained show that: the thermal regime of the soils in TP is of mesic type and the hydric regime is ustic; multiannual average of temperature in soil at 10 cm depth is 11.40ºC, respectively at 50 cm depth is 10.24ºC; the average yearly air temperature is 11.17ºC; multiannual average of soil moisture is 0.227 m3/m3; Multiannual average value of precipitation is 466.52 mm. During the studied period, compared with data series available (1961-1990; 1901-2000), clear decrease of the average quantities of rainfall especially during critical periods for crops, and increases in average temperatures for the entire year can be noticed. Between June and August the highest temperature difference were recorded, differences of +3.09°C to +3.65°C. There is an increase phenomenon of drought and heat; determined indicators show that most values, 61.11%, are commensurate with a semiarid climate. Aggression peaks are in February-April, July, and October-November, and for the whole period, in 19.43% of the cases are favorable and very favorable conditions for triggering erosion. Recommended agro-technical measures to limit and counteract the effects of drought, as a climatic phenomenon with major risk to agriculture in TP, refer to: i) use of a biological material resistant to water stress and heat; ii) use of management practices favorable for accumulation of, conservation and the efficient use of water from rainfall; iii) operating a system of conservation agriculture based on soil protection and desertification avoidance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1842-4090; 1844-489x ISBN Medium
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4984
Permanent link to this record
 

 
Author Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; Lutz, W.; Popp, A.; Cuaresma, J.C.; KC, S.; Leimbach, M.; Jiang, L.; Kram, T.; Rao, S.; Emmerling, J.; Ebi, K.; Hasegawa, T.; Havlik, P.; Humpenöder, F.; Da Silva, L.A.; Smith, S.; Stehfest, E.; Bosetti, V.; Eom, J.; Gernaat, D.; Masui, T.; Rogelj, J.; Strefler, J.; Drouet, L.; Krey, V.; Luderer, G.; Harmsen, M.; Takahashi, K.; Baumstark, L.; Doelman, J.C.; Kainuma, M.; Klimont, Z.; Marangoni, G.; Lotze-Campen, H.; Obersteiner, M.; Tabeau, A.; Tavoni, M.
Title The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview Type Journal Article
Year 2017 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change
Volume 42 Issue Pages 153-168
Keywords Shared Socioeconomic Pathways; SSP; Climate change; RCP; Community scenarios; Mitigation; Adaptation
Abstract Abstract This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).
Address 2017-06-13
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-3780 ISBN Medium
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 5008
Permanent link to this record
 

 
Author Mitter, H.; Schmid, E.; Sinabell, F.
Title Integrated modelling of protein crop production responses to climate change and agricultural policy scenarios in Austria Type Journal Article
Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 65 Issue Pages 205-220
Keywords Climate change impact; Adaptation; Soybean; EPIC; Common Agricultural Policy; Land use
Abstract Climate and policy changes are likely to affect protein crop production and thus trade balances in Europe, which is highly dependent on imports. Exemplified for Austrian cropland, we developed an integrated modelling framework to analyze climate change and policy scenario impacts on protein crop production and environmental outcomes. The integrated modelling framework consists of a statistical climate change model, a crop rotation model, the bio-physical process model EPIC, and the economic bottom-up land use optimization model BiomAT. EPIC is applied to simulate annual dry matter crop yields for different crop management practices including crop rotations, fertilization intensities, and irrigation, as well as for 3 regional climate change scenarios until 2040 at a 1 km grid resolution. BiomAT maximizes total gross margins by optimizing land use choices and crop management practices subject to spatially explicit cropland endowments. The model results indicate that changes in agricultural policy conditions, cropland use, and higher flexibility in crop management practices may reduce protein import dependence under changing climatic conditions. Expanding protein crop production is most attractive in south-eastern Austria with its Central European continental climate where maize is most often replaced in crop rotations. However, the acreage of protein crops is limited by agronomically suitable cropland. An intended side effect is the reduction of nitrogen fertilizer inputs by about 0.1% if total protein crop production increases by 1%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577x ISBN Medium
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5012
Permanent link to this record
 

 
Author Challinor, A.J.; Müller, C.; Asseng, S.; Deva, C.; Nicklin, K.J.; Wallach, D.; Vanuytrecht, E.; Whitfield, S.; Ramirez-Villegas, J.; Koehler, A.-K.
Title Improving the use of crop models for risk assessment and climate change adaptation Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 159 Issue Pages 296-306
Keywords Crop model; Risk assessment; Climate change impacts; Adaptation; Climate models; Uncertainty
Abstract Highlights

• 14 criteria for use of crop models in assessments of impacts, adaptation and risk • Working with stakeholders to identify timing of risks is key to risk assessments. • Multiple methods needed to critically assess the use of climate model output • Increasing transparency and inter-comparability needed in risk assessments

Abstract

Crop models are used for an increasingly broad range of applications, with a commensurate proliferation of methods. Careful framing of research questions and development of targeted and appropriate methods are therefore increasingly important. In conjunction with the other authors in this special issue, we have developed a set of criteria for use of crop models in assessments of impacts, adaptation and risk. Our analysis drew on the other papers in this special issue, and on our experience in the UK Climate Change Risk Assessment 2017 and the MACSUR, AgMIP and ISIMIP projects. The criteria were used to assess how improvements could be made to the framing of climate change risks, and to outline the good practice and new developments that are needed to improve risk assessment. Key areas of good practice include: i. the development, running and documentation of crop models, with attention given to issues of spatial scale and complexity; ii. the methods used to form crop-climate ensembles, which can be based on model skill and/or spread; iii. the methods used to assess adaptation, which need broadening to account for technological development and to reflect the full range options available. The analysis highlights the limitations of focussing only on projections of future impacts and adaptation options using pre-determined time slices. Whilst this long-standing approach may remain an essential component of risk assessments, we identify three further key components: 1. Working with stakeholders to identify the timing of risks. What are the key vulnerabilities of food systems and what does crop-climate modelling tell us about when those systems are at risk? 2. Use of multiple methods that critically assess the use of climate model output and avoid any presumption that analyses should begin and end with gridded output. 3. Increasing transparency and inter-comparability in risk assessments. Whilst studies frequently produce ranges that quantify uncertainty, the assumptions underlying these ranges are not always clear. We suggest that the contingency of results upon assumptions is made explicit via a common uncertainty reporting format; and/or that studies are assessed against a set of criteria, such as those presented in this paper.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language phase 2+ Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521x ISBN Medium
Area CropM Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5175
Permanent link to this record