toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dono, G.; Cortignani, R.; Doro, L.; Giraldo, L.; Ledda, L.; Pasqui, M.; Roggero, P.P. url  doi
openurl 
  Title An integrated assessment of the impacts of changing climate variability on agricultural productivity and profitability in an irrigated Mediterranean catchment Type Journal Article
  Year 2013 Publication Water Resource Management Abbreviated Journal Water Resource Manage.  
  Volume 27 Issue 10 Pages 3607-3622  
  Keywords discrete stochastic programming; climate change variability; adaptation to climate change; net evapotranspiration and irrigation requirements; water availability; epic crops model; economic impact of climate change; precipitation; uncertainty; region; series; yield; model; scale; wheat; gis  
  Abstract Climate change is likely to have a profound effect on many agricultural variables, although the extent of its influence will vary over the course of the annual farm management cycle. Consequently, the effect of different and interconnected physical, technical and economic factors must be modeled in order to estimate the effects of climate change on agricultural productivity. Such modeling commonly makes use of indicators that summarize the among environmental factors that are considered when farmers plan their activities. This study uses net evapotranspiration (ETN), estimated using EPIC, as a proxy index for the physical factors considered by farmers when managing irrigation. Recent trends suggest that the probability distribution function of ETN may continue to change in the near future due to changes in the irrigation needs of crops. Also, water availability may continue to vary due to changes in the rainfall regime. The impacts of the uncertainties related to these changes on costs are evaluated using a Discrete Stochastic Programming model representing an irrigable Mediterranean area where limited water is supplied from a reservoir. In this context, adaptation to climate change can be best supported by improvements to the collective irrigation systems, rather than by measures aimed at individual farms such as those contained within the rural development policy.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-4741 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4487  
Permanent link to this record
 

 
Author Below, T.B.; Mutabazi, K.D.; Kirschke, D.; Franke, C.; Sieber, S.; Siebert, R.; Tscherning, K. url  doi
openurl 
  Title Can farmers’ adaptation to climate change be explained by socio-economic household-level variables Type Journal Article
  Year 2012 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 22 Issue 1 Pages 223-235  
  Keywords Sub-Saharan Africa; Tanzania; Adaptive capacity; Index; Vulnerability; Adaptation; adaptive capacity; environmental-change; south-africa; vulnerability; variability; resilience; tanzania; framework; drought; policy  
  Abstract A better understanding of processes that shape farmers’ adaptation to climate change is critical to identify vulnerable entities and to develop well-targeted adaptation policies. However, it is currently poorly understood what determines farmers’ adaptation and how to measure it. In this study, we develop an activity-based adaptation index (AAI) and explore the relationship between socioeconomic variables and farmers’ adaptation behavior by means of an explanatory factor analysis and a multiple linear regression model using latent variables. The model was tested in six villages situated in two administrative wards in the Morogoro region of Tanzania. The Mlali ward represents a system of relatively high agricultural potential, whereas the Gairo ward represents a system of low agricultural potential. A household survey, a rapid rural appraisal and, a stakeholder workshop were used for data collection. The data were analyzed using factor analysis, multiple linear regression, descriptive statistical methods and qualitative content analysis. The empirical results are discussed in the context of theoretical concepts of adaptation and the sustainable livelihood approach. We found that public investment in rural infrastructure, in the availability and technically efficient use of inputs, in a good education system that provides equal chances for women, and in the strengthening of social capital, agricultural extension and, microcredit services are the best means of improving the adaptation of the farmers from the six villages in Gairo and Mlali. We conclude that the newly developed AAI is a simple but promising way to capture the complexity of adaptation processes that addresses a number of shortcomings of previous index studies.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4467  
Permanent link to this record
 

 
Author Jägermeyr, J.; Gerten, D.; Schaphoff, S.; Heinke, J.; Lucht, W.; Rockström, J. url  doi
openurl 
  Title Integrated crop water management might sustainably halve the global food gap Type Journal Article
  Year 2016 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 11 Issue 2 Pages 025002  
  Keywords sustainable intensification; yield gap; water harvesting; conservation agriculture; irrigation efficiency; food security; climate change adaptation; sub-saharan africa; rain-fed agriculture; dry-spell mitigation; supplemental irrigation; climate-change; smallholder irrigation; environmental impacts; developing-countries; semiarid region; south-africa  
  Abstract As planetary boundaries are rapidly being approached, humanity has little room for additional expansion and conventional intensification of agriculture, while a growing world population further spreads the food gap. Ample evidence exists that improved on-farm water management can close water-related yield gaps to a considerable degree, but its global significance remains unclear. In this modeling study we investigate systematically to what extent integrated crop water management might contribute to closing the global food gap, constrained by the assumption that pressure on water resources and land does not increase. Using a process-based bio-/agrosphere model, we simulate the yield-increasing potential of elevated irrigation water productivity (including irrigation expansion with thus saved water) and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected future climate (from 20 climate models, with and without beneficial CO2 effects). Results show that irrigation efficiency improvements can save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an ‘ambitious’ scenario), and if rerouted to irrigate neighboring rainfed systems, can boost kcal production significantly (26% global increase). Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, the ambitious yet achievable integrated water management strategies explored in this study could increase global production by 41% and close the water-related yield gap by 62%. Unabated climate change will have adverse effects on crop yields in many regions, but improvements in water management as analyzed here can buffer such effects to a significant degree.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4733  
Permanent link to this record
 

 
Author Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Rötter, R.P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, A.J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Kersebaum, K.C.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J. url  doi
openurl 
  Title Uncertainty in simulating wheat yields under climate change Type Journal Article
  Year 2013 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change  
  Volume 3 Issue 9 Pages 827-832  
  Keywords crop production; models; food; co2; temperature; projections; adaptation; scenarios; ensemble; impacts  
  Abstract Projections of climate change impacts on crop yields are inherently uncertain(1). Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate(2). However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models(1,3) are difficult(4). Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1758-678x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur, IPCC-AR5 Approved no  
  Call Number MA @ admin @ Serial 4599  
Permanent link to this record
 

 
Author Rusu, T.; Coste, C.L.; Moraru, P.I.; Szajdak, L.W.; Pop, A.I.; Duda, B.M. url  openurl
  Title Impact of climate change on agro-climatic indicators and agricultural lands in the Transylvanian Plain between 2008-2014 Type Journal Article
  Year 2017 Publication Carpathian Journal of Earth and Environmental Sciences Abbreviated Journal Carpathian Journal of Earth and Environmental Sciences  
  Volume 12 Issue 1 Pages 23-34  
  Keywords climate change; adaptation technologies; Transylvanian Plain  
  Abstract Integrated conservation and management of agricultural areas affected by the current global warming represents a priority at international level following the implementation of the principles of sustainable agriculture and adaptation measures. Transylvanian Plain (TP), with an area of 395,616 ha is of great agricultural importance for Romania, but with an afforestation degree of only 6.8% and numerous degradation phenomena of farmland, it has the lowest degree of sustainability to climate change. Monitoring of agro-climatic indicators and their evolution in between 2008-2014 and the analysis of the obtained data underlie the technological development of recommendations tailored to current favorable conditions for the main crops. Results obtained show that: the thermal regime of the soils in TP is of mesic type and the hydric regime is ustic; multiannual average of temperature in soil at 10 cm depth is 11.40ºC, respectively at 50 cm depth is 10.24ºC; the average yearly air temperature is 11.17ºC; multiannual average of soil moisture is 0.227 m3/m3; Multiannual average value of precipitation is 466.52 mm. During the studied period, compared with data series available (1961-1990; 1901-2000), clear decrease of the average quantities of rainfall especially during critical periods for crops, and increases in average temperatures for the entire year can be noticed. Between June and August the highest temperature difference were recorded, differences of +3.09°C to +3.65°C. There is an increase phenomenon of drought and heat; determined indicators show that most values, 61.11%, are commensurate with a semiarid climate. Aggression peaks are in February-April, July, and October-November, and for the whole period, in 19.43% of the cases are favorable and very favorable conditions for triggering erosion. Recommended agro-technical measures to limit and counteract the effects of drought, as a climatic phenomenon with major risk to agriculture in TP, refer to: i) use of a biological material resistant to water stress and heat; ii) use of management practices favorable for accumulation of, conservation and the efficient use of water from rainfall; iii) operating a system of conservation agriculture based on soil protection and desertification avoidance.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1842-4090; 1844-489x ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4984  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: