toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Topp, K.; Eory, V.; Bannink, A.; Bartley, D.J.; Blanco-Penedo, I.; Cortignani, R.; Del Prado, A.; Dono, G.; Faverdin, P.; Graux, A.-I.; Hutchings, N.; Lauwers, L.; Özkan Gülzari, Ş.; Rolinski, S.; Ruiz Ramos, M.; Sandars, D.L.; Sándor, R.; Schoenhart, M.; Seddaiu, G.; van Middelkoop, J.; Weindl, I.; Kipling, R.P. url  openurl
  Title Modelling climate change adaptation in European agriculture: Definitions and Current Modelling Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume (down) 10 Issue Pages L2.3.2-D  
  Keywords  
  Abstract Confidential content, in preparation for a peer-reviewed publication.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 4959  
Permanent link to this record
 

 
Author Hutchings, N.; Weindl, I.; Topp, C.F.E.; Snow, V.O.; Rotz, A.; Raynal, H.; Özkan Gülzari, Ş.; Martin, R.; Holzworth, D.P.; Graux, A.-I.; Faverdin, P.; Del Prado, A.; Eckard, R.; Bannink, A. url  openurl
  Title Does collaborative farm-scale modelling address current challenges and future opportunities Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume (down) 10 Issue Pages L1.4-D2  
  Keywords  
  Abstract Resources required increasing, resources available decreasing Farm-scale modellers will need to make strategic decisions Single-owner models May continue with additional resources Risk of ‘succession’ problem Community modelling is an alternative Need to continue building a community of farm modellers  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 4978  
Permanent link to this record
 

 
Author Bodirsky, B.L.; Rolinski, S.; Biewald, A.; Weindl, I.; Popp, A.; Lotze-Campen, H. url  doi
openurl 
  Title Global Food Demand Scenarios for the 21st Century Type Journal Article
  Year 2015 Publication PLoS One Abbreviated Journal PLoS One  
  Volume (down) 10 Issue 11 Pages e0139201  
  Keywords  
  Abstract Long-term food demand scenarios are an important tool for studying global food security and for analysing the environmental impacts of agriculture. We provide a simple and transparent method to create scenarios for future plant-based and animal-based calorie demand, using time-dependent regression models between calorie demand and income. The scenarios can be customized to a specific storyline by using different input data for gross domestic product (GDP) and population projections and by assuming different functional forms of the regressions. Our results confirm that total calorie demand increases with income, but we also found a non-income related positive time-trend. The share of animal-based calories is estimated to rise strongly with income for low-income groups. For high income groups, two ambiguous relations between income and the share of animal-based products are consistent with historical data: First, a positive relation with a strong negative time-trend and second a negative relation with a slight negative time-trend. The fits of our regressions are highly significant and our results compare well to other food demand estimates. The method is exemplarily used to construct four food demand scenarios until the year 2100 based on the storylines of the IPCC Special Report on Emissions Scenarios (SRES). We find in all scenarios a strong increase of global food demand until 2050 with an increasing share of animal-based products, especially in developing countries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4997  
Permanent link to this record
 

 
Author Humpenöder, F.; Popp, A.; Dietrich, J.P.; Klein, D.; Lotze-Campen, H.; Bonsch, M.; Bodirsky, B.L.; Weindl, I.; Stevanovic, M.; Müller, C. url  doi
openurl 
  Title Investigating afforestation and bioenergy CCS as climate change mitigation strategies Type Journal Article
  Year 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume (down) 9 Issue 6 Pages 064029  
  Keywords climate change mitigation; afforestation; bioenergy; carbon capture and storage; land-use modeling; land-based mitigation; carbon sequestration; land-use change; crop productivity; carbon capture; energy; storage; model; food; conservation; agriculture; scenarios  
  Abstract The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600-700 GtCO(2)), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO(2)) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4627  
Permanent link to this record
 

 
Author Rolinski, S.; Weindl, I.; Heinke, J.; Bodirsky, B.L.; Biewald, A.; Lotze-Campen, H. url  doi
openurl 
  Title Pasture harvest, carbon sequestration and feeding potentials under different grazing intensities Type Journal Article
  Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences  
  Volume (down) 6 Issue 01 Pages 43-45  
  Keywords global dynamic vegetation model; LPJmL; grasslands; livestock production  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4541  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: