|   | 
Details
   web
Records
Author Humpenöder, F.; Popp, A.; Stevanovic, M.; Müller, C.; Bodirsky, B.L.; Bonsch, M.; Dietrich, J.P.; Lotze-Campen, H.; Weindl, I.; Biewald, A.; Rolinski, S.
Title Land-use and carbon cycle responses to moderate climate change: implications for land-based mitigation Type Journal Article
Year 2015 Publication Environmental Science and Technology Abbreviated Journal Environ Sci Technol
Volume 49 Issue 11 Pages 6731-6739
Keywords (up)
Abstract Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x ISBN Medium
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4998
Permanent link to this record
 

 
Author Stevanović, M.; Popp, A.; Bodirsky, B.L.; Humpenöder, F.; Müller, C.; Weindl, I.; Dietrich, J.P.; Lotze-Campen, H.; Kreidenweis, U.; Rolinski, S.; Biewald, A.; Wang, X.
Title Mitigation Strategies for Greenhouse Gas Emissions from Agriculture and Land-Use Change: Consequences for Food Prices Type Journal Article
Year 2017 Publication Environmental Science and Technology Abbreviated Journal Environmental Science and Technology
Volume 51 Issue 1 Pages 365-374
Keywords (up)
Abstract The land use sector of agriculture, forestry, and other land use (AFOLU) plays a central role in ambitious climate change mitigation efforts. Yet, mitigation policies in agriculture may be in conflict with food security related targets. Using a global agro-economic model, we analyze the impacts on food prices under mitigation policies targeting either incentives for producers (e.g., through taxes) or consumer preferences (e.g., through education programs). Despite having a similar reduction potential of 43-44% in 2100, the two types of policy instruments result in opposite outcomes for food prices. Incentive-based mitigation, such as protecting carbon-rich forests or adopting low-emission production techniques, increase land scarcity and production costs and thereby food prices. Preference-based mitigation, such as reduced household waste or lower consumption of animal-based products, decreases land scarcity, prevents emissions leakage, and concentrates production on the most productive sites and consequently lowers food prices. Whereas agricultural emissions are further abated in the combination of these mitigation measures, the synergy of strategies fails to substantially lower food prices. Additionally, we demonstrate that the efficiency of agricultural emission abatement is stable across a range of greenhouse-gas (GHG) tax levels, while resulting food prices exhibit a disproportionally larger spread.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x ISBN Medium
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 5007
Permanent link to this record
 

 
Author Kipling, R.P.; Topp, C.F.E.; Bannink, A.; Bartley, D.J.; Blanco-Penedo, I.; Cortignani, R.; del Prado, A.; Dono, G.; Faverdin, P.; Graux, A.-I.; Hutchings, N.J.; Lauwers, L.; Gulzari, S.O.; Reidsma, P.; Rolinski, S.; Ruiz-Ramos, M.; Sandars, D.L.; Sandor, R.; Schoenhart, M.; Seddaiu, G.; van Middelkoop, J.; Shrestha, S.; Weindl, I.; Eory, V.
Title To what extent is climate change adaptation a novel challenge for agricultural modellers Type Journal Article
Year 2019 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 120 Issue Pages Unsp 104492
Keywords (up) Adaptation; Agricultural modelling; Climate change; Research challenges; greenhouse-gas emissions; farm-level adaptation; land-use; food; security; adapting agriculture; livestock production; decision-making; change impacts; dairy farms; crop
Abstract Modelling is key to adapting agriculture to climate change (CC), facilitating evaluation of the impacts and efficacy of adaptation measures, and the design of optimal strategies. Although there are many challenges to modelling agricultural CC adaptation, it is unclear whether these are novel or, whether adaptation merely adds new motivations to old challenges. Here, qualitative analysis of modellers’ views revealed three categories of challenge: Content, Use, and Capacity. Triangulation of findings with reviews of agricultural modelling and Climate Change Risk Assessment was then used to highlight challenges specific to modelling adaptation. These were refined through literature review, focussing attention on how the progressive nature of CC affects the role and impact of modelling. Specific challenges identified were: Scope of adaptations modelled, Information on future adaptation, Collaboration to tackle novel challenges, Optimisation under progressive change with thresholds, and Responsibility given the sensitivity of future outcomes to initial choices under progressive change.
Address 2020-02-14
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5223
Permanent link to this record
 

 
Author Bodirsky, B.L.; Popp, A.; Lotze-Campen, H.; Dietrich, J.P.; Rolinski, S.; Weindl, I.; Schmitz, C.; Müller, C.; Bonsch, M.; Humpenöder, F.; Biewald, A.; Stevanovic, M.
Title Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution Type Journal Article
Year 2014 Publication Nature Communications Abbreviated Journal Nat. Comm.
Volume 5 Issue Pages 3858
Keywords (up) Animals; Crops, Agricultural/metabolism/*supply & distribution; Environmental Pollution/*prevention & control; *Food Supply; Humans; Models, Theoretical; Nitrogen Fixation; *Population Growth; Reactive Nitrogen Species/*supply & distribution
Abstract Reactive nitrogen (Nr) is an indispensable nutrient for agricultural production and human alimentation. Simultaneously, agriculture is the largest contributor to Nr pollution, causing severe damages to human health and ecosystem services. The trade-off between food availability and Nr pollution can be attenuated by several key mitigation options, including Nr efficiency improvements in crop and animal production systems, food waste reduction in households and lower consumption of Nr-intensive animal products. However, their quantitative mitigation potential remains unclear, especially under the added pressure of population growth and changes in food consumption. Here we show by model simulations, that under baseline conditions, Nr pollution in 2050 can be expected to rise to 102-156% of the 2010 value. Only under ambitious mitigation, does pollution possibly decrease to 36-76% of the 2010 value. Air, water and atmospheric Nr pollution go far beyond critical environmental thresholds without mitigation actions. Even under ambitious mitigation, the risk remains that thresholds are exceeded.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4513
Permanent link to this record
 

 
Author Popp, A.; Humpenöder, F.; Weindl, I.; Bodirsky, B.L.; Bonsch, M.; Lotze-Campen, H.; Müller, C.; Biewald, A.; Rolinski, S.; Stevanovic, M.; Dietrich, J.P.
Title Land-use protection for climate change mitigation Type Journal Article
Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 4 Issue 12 Pages 1095-1098
Keywords (up) avoided deforestation; forest conservation; carbon emissions; co2 emissions; productivity; scarcity; stocks; redd
Abstract Land-use change, mainly the conversion of tropical forests to agricultural land, is a massive source of carbon emissions and contributes substantially to global warming(1-3). Therefore, mechanisms that aim to reduce carbon emissions from deforestation are widely discussed, A central challenge is the avoidance of international carbon leakage if forest conservation is not implemented globally’’, Here, We show that forest conservation schemes, even if implemented globally, could lead to another type of carbon leakage by driving cropland expansion in non-forested areas that are not subject to forest conservation schemes (non-forest leakage). These areas have a smaller. but still considerable potential to store carbon(5,6). We show that a global forest policy could reduce carbon emissions by 77 Gt CO2, but would still allow for decreases in carbon stocks of non-forest land by 96 Gt CO2, until 2100 due to non-forest leakage effects. Furthermore; abandonment of agricultural hand and associated carbon uptake through vegetation regrowth is hampered. Effective mitigation measures thus require financing structures and conservation investments that cover the full range of carbon-rich ecosystems. However, our analysis indicates that greater agricultural productivity increases would be needed to compensate for such restrictions on agricultural expansion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x 1758-6798 ISBN Medium Article
Area Expedition Conference
Notes CropM, LiveM, TradeM Approved no
Call Number MA @ admin @ Serial 4540
Permanent link to this record