|   | 
Details
   web
Records
Author Webber, H.; Kahiluoto, H.; Rötter, R.P.; Ewert, F.
Title Enhancing climate resilience of cropping systems Type Book Chapter
Year 2014 Publication Abbreviated Journal
Volume Issue Pages 167-185
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher CAB International Place of Publication Wallingford Editor Fuhrer, J.; Gregory, P.J.
Language Summary Language Original Title
Series Editor Series Title Climate Change Impact and Adaptation in Agricultural Systems Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2897
Permanent link to this record
 

 
Author Webber, H.; Zhao, G.; Britz, W.; deVries, W.; Wolf, J.; Gaiser, T.; Hoffmann, H.; Ewert, F.
Title Specification of nitrogen use in regional climate impact assessment studies Type Conference Article
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Montpellier (France) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN ISBN Medium
Area Expedition Conference 5th International Symposium for Farming Systems Design, Montpellier, France, 2015-09-07 to 2015-09-10, Montpellier
Notes Approved no
Call Number MA @ admin @ Serial 2899
Permanent link to this record
 

 
Author Webber, H.; Gaiser, T.; Oomen, R.; Teixeira, E.; Zhao, G.; Wallach, D.; Zimmermann, A.; Ewert, F.
Title Uncertainty in future irrigation water demand and risk of crop failure for maize in Europe Type Journal Article
Year 2016 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume Issue Pages
Keywords crop model; impact assessment; crop water use; evapotranspiration; irrigation; drought; uncertainty
Abstract While crop models are widely used to assess the change in crop productivity with climate change, their skill in assessing irrigation water demand or the risk of crop failure in large area impact assessments is relatively unknown. The objective of this study is to investigate which aspects of modeling crop water use (reference crop evapotranspiration (ET0), soil water extraction, soil evaporation, soil water balance and root growth) contributes most to the variability in estimates of maize crop water use and the risk of crop failure, and demonstrate the resulting uncertainty in a climate change impact study for Europe. The SIMPLACE crop modeling framework was used to couple the LINTUL5 crop model in factorial combinations of 2-3 different approaches for simulating the 5 aspects of crop water use, resulting in 51 modeling approaches. Using experiments in France and New Zeland, analysis of total sensitivity revealed that ET0 explained the most variability in both irrigated maize water use and rainfed grain yield levels, with soil evaporation also imporatant in the French experiment. In the European impact study, net irrigation requirement differed by 36% between the Penman and Hargreaves ET0 methods in the baseline period. Average EU grain yields were similar between models, but differences approached 1-2 tonnes in parts of France and Southern Europe. EU wide esimates of crop failure in the historical period ranged between 5.4 years for Priestley-Taylor to every 7.9 years for the Penman ET0 methods. While the uncertainty in absolute values between models was significant, estimates of relative changes were similar between models, confirming the utility of crop models in assessing climate change impacts. If ET0 estimates in crop models can be improved, through the use of appropriate methods, uncertainty in irrigation water demand as well as in yield estimates under drought can be reduced.
Address 2016-09-13
Corporate Author Thesis
Publisher Place of Publication Editor
Language Language Summary Language Newsletter July Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN ISBN Medium Article
Area CropM Expedition Conference
Notes CropM; wos; ft=macsur; Approved no
Call Number MA @ admin @ Serial 4778
Permanent link to this record
 

 
Author Kahiluoto, H.; Rötter, R.; Webber, H.; Ewert, F.
Title The Role of Modelling in Adapting and Building the Climate Resilience of Cropping Systems Type Book Chapter
Year 2014 Publication Abbreviated Journal
Volume Issue Pages 204-215
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher CAB International Place of Publication Wallingford Editor Fuhrer, J.; Gregory, P.J.
Language Summary Language Original Title
Series Editor Series Title Climate Change Impact and Adaptation in Agricultural Systems Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2513
Permanent link to this record
 

 
Author Eyshi Rezaei, E.; Webber, H.; Gaiser, T.; Naab, J.; Ewert, F.
Title Heat stress in cereals: Mechanisms and modelling Type Journal Article
Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 64 Issue Pages 98-113
Keywords high temperature; heat stress; cereal yield; climate change impact; crop modelling; high-temperature stress; tropical maize hybrids; triticum-aestivum l; high-yielding rice; induced spikelet sterility; stem reserve mobilization; climate-change impacts; oryza-sativa l.; grain-yield; kernel set
Abstract Increased climate variability and higher mean temperatures are expected across many world regions, both of which will contribute to more frequent extreme high temperatures events. Empirical evidence increasingly shows that short episodes of high temperature experienced around flowering can have large negative impacts on cereal grain yields, a phenomenon increasingly referred to as heat stress. Crop models are currently the best tools available to investigate how crops will grow under future climatic conditions, though the need to include heat stress effects has been recognized only relatively recently. We reviewed literature on both how key crop physiological processes and the observed yields under production conditions are impacted by high temperatures occurring particularly in the flowering and grain filling phases for wheat, maize and rice. This state of the art in crop response to heat stress was then contrasted with generic approaches to simulate the impacts of high temperatures in crop growth models. We found that the observed impacts of heat stress on crop yield are the end result of the integration of many processes, not all of which will be affected by a “high temperature” regime. This complexity confirms an important role for crop models in systematizing the effects of high temperatures on many processes under a range of environments and realizations of crop phenology. Four generic approaches to simulate high temperature impacts on yield were identified: (1) empirical reduction of final yield, (2) empirical reduction in daily increment in harvest index, (3) empirical reduction in grain number, and (4) semi-deterministic models of sink and source limitation. Consideration of canopy temperature is suggested as a promising approach to concurrently account for heat and drought stress, which are likely to occur simultaneously. Improving crop models’ response to high temperature impacts on cereal yields will require experimental data representative of field production and should be designed to connect what is already known about physiological responses and observed yield impacts. (C) 2014 Elsevier B.V. All rights reserved.
Address 2016-06-01
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN 1161-0301 ISBN Medium Review
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4741
Permanent link to this record