toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Webber, H.; Martre, P.; Asseng, S.; Kimball, B.; White, J.; Ottman, M.; Wall, G.W.; De Sanctis, G.; Doltra, J.; Grant, R.; Kassie, B.; Maiorano, A.; Olesen, J.E.; Ripoche, D.; Rezaei, E.E.; Semenov, M.A.; Stratonovitch, P.; Ewert, F. doi  openurl
  Title Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison Type Journal Article
  Year 2017 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 202 Issue Pages 21-35  
  Keywords Crop model comparison; Canopy temperature; Heat stress; Wheat  
  Abstract Even brief periods of high temperatures occurring around flowering and during grain filling can severely reduce grain yield in cereals. Recently, ecophysiological and crop models have begun to represent such phenomena. Most models use air temperature (Tair) in their heat stress responses despite evidence that crop canopy temperature (Tc) better explains grain yield losses. Tc can deviate significantly from Tair based on climatic factors and the crop water status. The broad objective of this study was to evaluate whether simulation of Tc improves the ability of crop models to simulate heat stress impacts on wheat under irrigated conditions. Nine process-based models, each using one of three broad approaches (empirical, EMP; energy balance assuming neutral atmospheric stability, EBN; and energy balance correcting for the atmospheric stability conditions, EBSC) to simulate Tc, simulated grain yield under a range of temperature conditions. The models varied widely in their ability to reproduce the measured Tc with the commonly used EBN models performing much worse than either EMP or EBSC. Use of Tc to account for heat stress effects did improve simulations compared to using only Tair to a relatively minor extent, but the models that additionally use Tc on various other processes as well did not have better yield simulations. Models that simulated yield well under heat stress had varying skill in simulating Tc. For example, the EBN models had very poor simulations of Tc but performed very well in simulating grain yield. These results highlight the need to more systematically understand and model heat stress events in wheat.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0378-4290 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4824  
Permanent link to this record
 

 
Author Webber, H.; Kahiluoto, H.; Rötter, R.P.; Ewert, F. openurl 
  Title Enhancing climate resilience of cropping systems Type Book Chapter
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages 167-185  
  Keywords CropM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher CAB International Place of Publication Wallingford Editor Fuhrer, J.; Gregory, P.J.  
  Language Summary Language Original Title  
  Series Editor Series Title Climate Change Impact and Adaptation in Agricultural Systems Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2897  
Permanent link to this record
 

 
Author Webber, H.; Zhao, G.; Britz, W.; deVries, W.; Wolf, J.; Gaiser, T.; Hoffmann, H.; Ewert, F. openurl 
  Title Specification of nitrogen use in regional climate impact assessment studies Type Conference Article
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Montpellier (France) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Medium  
  Area Expedition Conference 5th International Symposium for Farming Systems Design, Montpellier, France, 2015-09-07 to 2015-09-10, Montpellier  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2899  
Permanent link to this record
 

 
Author Webber, H.; Gaiser, T.; Oomen, R.; Teixeira, E.; Zhao, G.; Wallach, D.; Zimmermann, A.; Ewert, F. openurl 
  Title Uncertainty in future irrigation water demand and risk of crop failure for maize in Europe Type Journal Article
  Year 2016 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume Issue Pages  
  Keywords crop model; impact assessment; crop water use; evapotranspiration; irrigation; drought; uncertainty  
  Abstract While crop models are widely used to assess the change in crop productivity with climate change, their skill in assessing irrigation water demand or the risk of crop failure in large area impact assessments is relatively unknown. The objective of this study is to investigate which aspects of modeling crop water use (reference crop evapotranspiration (ET0), soil water extraction, soil evaporation, soil water balance and root growth) contributes most to the variability in estimates of maize crop water use and the risk of crop failure, and demonstrate the resulting uncertainty in a climate change impact study for Europe. The SIMPLACE crop modeling framework was used to couple the LINTUL5 crop model in factorial combinations of 2-3 different approaches for simulating the 5 aspects of crop water use, resulting in 51 modeling approaches. Using experiments in France and New Zeland, analysis of total sensitivity revealed that ET0 explained the most variability in both irrigated maize water use and rainfed grain yield levels, with soil evaporation also imporatant in the French experiment. In the European impact study, net irrigation requirement differed by 36% between the Penman and Hargreaves ET0 methods in the baseline period. Average EU grain yields were similar between models, but differences approached 1-2 tonnes in parts of France and Southern Europe. EU wide esimates of crop failure in the historical period ranged between 5.4 years for Priestley-Taylor to every 7.9 years for the Penman ET0 methods. While the uncertainty in absolute values between models was significant, estimates of relative changes were similar between models, confirming the utility of crop models in assessing climate change impacts. If ET0 estimates in crop models can be improved, through the use of appropriate methods, uncertainty in irrigation water demand as well as in yield estimates under drought can be reduced.  
  Address 2016-09-13  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Language Summary Language Newsletter July Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Medium Article  
  Area CropM Expedition Conference  
  Notes CropM; wos; ft=macsur; Approved no  
  Call Number MA @ admin @ Serial 4778  
Permanent link to this record
 

 
Author Kahiluoto, H.; Rötter, R.; Webber, H.; Ewert, F. openurl 
  Title The Role of Modelling in Adapting and Building the Climate Resilience of Cropping Systems Type Book Chapter
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages 204-215  
  Keywords CropM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher CAB International Place of Publication Wallingford Editor Fuhrer, J.; Gregory, P.J.  
  Language Summary Language Original Title  
  Series Editor Series Title Climate Change Impact and Adaptation in Agricultural Systems Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2513  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: