toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Yin, X.G.; Jabloun, M.; Olesen, J.E.; Özturk, I.; Wang, M.; Chen, F. doi  openurl
  Title Effects of climatic factors, drought risk and irrigation requirement on maize yield in the Northeast Farming Region of China Type Journal Article
  Year 2016 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.  
  Volume 154 Issue 7 Pages 1171-1189  
  Keywords  
  Abstract Drought risk is considered to be among the main limiting factors for maize (Zea mays L.) production in the Northeast Farming Region of China (NFR). Maize yield data from 44 stations over the period 1961-2010 were combined with data from weather stations to evaluate the effects of climatic factors, drought risk and irrigation requirement on rain-fed maize yield in specific maize growth phases. The maize growing season was divided into four growth phases comprising seeding, vegetative, flowering and maturity based on observations of phenological data from 1981 to 2010. The dual crop coefficient was used to calculate crop evapotranspiration and soil water balance during the maize growing season. The effects of mean temperature, solar radiation, effective rainfall, water deficit, drought stress days, actual crop evapotranspiration and irrigation requirement in different growth phases were included in the statistical model to predict maize yield. During the period 1961-2010, mean temperature increased significantly in all growth phases in NFR, while solar radiation decreased significantly in southern NFR in the seeding, vegetative and flowering phases. Effective rainfall increased in the seeding and vegetative phases, reducing water deficit over the period, whereas decreasing effective rainfall over time in the flowering and maturity phases enhanced water deficit. An increase in days with drought stress was concentrated in western NFR, with larger volumes of irrigation needed to compensate for increased dryness. The present results indicate that higher mean temperature in the seeding and maturity phases was beneficial for maize yield, whereas excessive rainfall would damage maize yield, in particular in the seeding and flowering phases. Drought stress in any growth stage was found to reduce maize yield and water deficit was slightly better than other indicators of drought stress for explaining yield variability. The effect of drought stress was particularly strong in the seeding and flowering phases, indicating that these periods should be given priority for irrigation. The yield-reducing effects of both drought and intense rainfall illustrate the importance of further development of irrigation and drainage systems for ensuring the stability of maize production in NFR.  
  Address 2016-09-30  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4780  
Permanent link to this record
 

 
Author Yin, X.; Olesen, J.E.; Wang, M.; Öztürk, I.; Chen, F. openurl 
  Title Observed and anticipated impacts and adaptation of crop production systems to climate change in the northeast farming region of China Type Manuscript
  Year Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords CropM;  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2911  
Permanent link to this record
 

 
Author Yin, X.; Olesen, J.E.; Li, W.; Wang, M.; Zhang, H. openurl 
  Title Contributions of climatic, technological and social factors to maize yield in the northeast farming region of China during 1985 to 2009 Type Manuscript
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords CropM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2912  
Permanent link to this record
 

 
Author Yin, X.; Olesen, J.E.; Li, W.; Wang, M.; Öztürk, I.; Chen, F. openurl 
  Title Climate effects on crop yield in the northeast farming region of China during 1961 to 2010 Type Manuscript
  Year Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords CropM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2910  
Permanent link to this record
 

 
Author Tao, F.; Zhang, Z.; Zhang, S.; Rötter, R.P.; Shi, W.; Xiao, D.; Liu, Y.; Wang, M.; Liu, F.; Zhang, H. url  doi
openurl 
  Title Historical data provide new insights into response and adaptation of maize production systems to climate change/variability in China Type Journal Article
  Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 185 Issue Pages 1-11  
  Keywords china; climate variability; grain yield; impact; maize; northeast china; tropical maize; wheat yields; heat-stress; crop yields; temperature; impacts; sensitivities; hybrids; trends  
  Abstract Extensive studies had been conducted to investigate the impacts of climate change on maize growth and yield in recent decades; however, the dynamics of crop husbandry in response and adaptation to climate change were not taken into account. Based on field observations spanning from 1981 to 2009 at 167 agricultural meteorological stations across China, we found that solar radiation and temperature over the observed maize growth period had decreasing trends during 1981-2009, and maize yields were positively correlated with these climate variables in major production regions. The decreasing trends in solar radiation and temperature during maize growth period were mainly ascribed to the adoption of late maturity cultivars with longer reproductive growth period (RGP). The adoption of late maturing cultivars with longer RGP contributed substantially to grain yield increase during the last three decades. The climate trends during maize growth period varied among different production areas. During 1981-2009, decreases in mean temperature, precipitation and solar radiation over maize growth period jointly reduced yield most by 13.2-17.3% in southwestern China, by contrast in northwestern China increases in mean temperature, precipitation and solar radiation jointly increased yield most by 12.9-14.4%. Our findings highlight that the adaptations of maize production system to climate change through shifts of sowing date and genotypes are underway and should be taken into accounted when evaluating climate change impacts. (C) 2015 Elsevier B.V. All rights reserved.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4816  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: