|   | 
Details
   web
Records
Author Martre, P.; Wallach, D.; Asseng, S.; Ewert, F.; Jones, J.W.; Rötter, R.P.; Boote, K.J.; Ruane, A.C.; Thorburn, P.J.; Cammarano, D.; Hatfield, J.L.; Rosenzweig, C.; Aggarwal, P.K.; Angulo, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Brisson, N.; Challinor, A.J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.F.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Kersebaum, K.C.; Müller, C.; Kumar, S.N.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; White, J.W.; Wolf, J.
Title Multimodel ensembles of wheat growth: many models are better than one Type Journal Article
Year 2015 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.
Volume (down) 21 Issue 2 Pages 911-925
Keywords Climate; Climate Change; Environment; *Models, Biological; Seasons; Triticum/*growth & development; ecophysiological model; ensemble modeling; model intercomparison; process-based model; uncertainty; wheat (Triticum aestivum L.)
Abstract Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4665
Permanent link to this record
 

 
Author Hoffmann, H.; Zhao, G.; Asseng, S.; Bindi, M.; Biernath, C.; Constantin, J.; Coucheney, E.; Dechow, R.; Doro, L.; Eckersten, H.; Gaiser, T.; Grosz, B.; Heinlein, F.; Kassie, B.T.; Kersebaum, K.-C.; Klein, C.; Kuhnert, M.; Lewan, E.; Moriondo, M.; Nendel, C.; Priesack, E.; Raynal, H.; Roggero, P.P.; Rötter, R.P.; Siebert, S.; Specka, X.; Tao, F.; Teixeira, E.; Trombi, G.; Wallach, D.; Weihermüller, L.; Yeluripati, J.; Ewert, F.
Title Impact of spatial soil and climate input data aggregation on regional yield simulations Type Journal Article
Year 2016 Publication PLoS One Abbreviated Journal PLoS One
Volume (down) 11 Issue 4 Pages e0151782
Keywords systems simulation; nitrogen dynamics; winter-wheat; crop models; data resolution; scale; water; variability; calibration; weather
Abstract We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4725
Permanent link to this record
 

 
Author Webber, H.; Ewert, F.; Olesen, J.E.; Müller, C.; Fronzek, S.; Ruane, A.C.; Bourgault, M.; Martre, P.; Ababaei, B.; Bindi, M.; Ferrise, R.; Finger, R.; Fodor, N.; Gabaldón-Leal, C.; Gaiser, T.; Jabloun, M.; Kersebaum, K.-C.; Lizaso, J.I.; Lorite, I.J.; Manceau, L.; Moriondo, M.; Nendel, C.; Rodríguez, A.; Ruiz-Ramos, M.; Semenov, M.A.; Siebert, S.; Stella, T.; Stratonovitch, P.; Trombi, G.; Wallach, D.
Title Diverging importance of drought stress for maize and winter wheat in Europe Type Journal Article
Year 2018 Publication Nature Communications Abbreviated Journal Nat. Comm.
Volume (down) 9 Issue Pages 4249
Keywords Climate-Change Impacts; Air CO2 Enrichment; Food Security; Heat-Stress; Nitrogen Dynamics; Semiarid Environments; Canopy Temperature; Simulation-Model; Crop Production; Elevated CO2
Abstract Understanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984-2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.
Address 2018-10-25
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5211
Permanent link to this record
 

 
Author Wallach, D.; Thorburn, P.; Asseng, S.; Challinor, A.J.; Ewert, F.; Jones, J.W.; Rötter, R.; Ruane, A.
Title Overview paper on comprehensive framework for assessment of error and uncertainty in crop model predictions Type Report
Year 2016 Publication FACCE MACSUR Reports Abbreviated Journal
Volume (down) 8 Issue Pages C4.1-D
Keywords MACSUR_ACK; CropM
Abstract Crop models are important tools for impact assessment of climate change, as well as for  exploring management options under current climate. It is essential to evaluate the  uncertainty associated with predictions of these models. Several ways of quantifying  prediction uncertainty have been explored in the literature, but there have been no  studies of how the different approaches are related to one another, and how they are  related to some overall measure of prediction uncertainty. Here we show that all the  different approaches can be related to two different viewpoints about the model; either  the model is treated as a fixed predictor with some average error, or the model can be  treated as a random variable with uncertainty in one or more of model structure, model  inputs and model parameters. We discuss the differences, and show how mean squared  error of prediction can be estimated in both cases. The results can be used to put  uncertainty estimates into a more general framework and to relate different uncertainty  estimates to one another and to overall prediction uncertainty. This should lead to a  better understanding of crop model prediction uncertainty and the underlying causes of  that uncertainty. This study was published as (Wallach et al. 2016)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ office @ Serial 2954
Permanent link to this record
 

 
Author Rivington, M.; Wallach, D.
Title Quantified Evidence of Error Propagation Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume (down) 6 Issue Pages D-C4.2.3
Keywords
Abstract Error propagation within models is an issue that requires a structured approach involving the testing of individual equations and evaluation of the consequences of error creation from imperfect equation and model structure on estimates of interest made by a model. This report briefly covers some of the key issues in error propagation and sets out several concepts, across a range of complexity, that may be used to organise an investigation into error propagation. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2102
Permanent link to this record