toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kersebaum, K.; Kroes, J.; Gobin, A.; Takáč, J.; Hlavinka, P.; Trnka, M.; Ventrella, D.; Giglio, L.; Ferrise, R.; Moriondo, M.; Dalla Marta, A.; Luo, Q.; Eitzinger, J.; Mirschel, W.; Weigel, H.-J.; Manderscheid, R.; Hoffmann, M.; Nejedlik, P.; Iqbal, M.; Hösch, J. url  doi
openurl 
  Title Assessing uncertainties of water footprints using an ensemble of crop growth models on winter wheat Type Journal Article
  Year 2016 Publication Water Abbreviated Journal Water  
  Volume 8 Issue 12 Pages 571  
  Keywords  
  Abstract Crop productivity and water consumption form the basis to calculate the water footprint (WF) of a specific crop. Under current climate conditions, calculated evapotranspiration is related to observed crop yields to calculate WF. The assessment of WF under future climate conditions requires the simulation of crop yields adding further uncertainty. To assess the uncertainty of model based assessments of WF, an ensemble of crop models was applied to data from five field experiments across Europe. Only limited data were provided for a rough calibration, which corresponds to a typical situation for regional assessments, where data availability is limited. Up to eight models were applied for wheat. The coefficient of variation for the simulated actual evapotranspiration between models was in the range of 13%–19%, which was higher than the inter-annual variability. Simulated yields showed a higher variability between models in the range of 17%–39%. Models responded differently to elevated CO2 in a FACE (Free-Air Carbon Dioxide Enrichment) experiment, especially regarding the reduction of water consumption. The variability of calculated WF between models was in the range of 15%–49%. Yield predictions contributed more to this variance than the estimation of water consumption. Transpiration accounts on average for 51%–68% of the total actual evapotranspiration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4441 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4987  
Permanent link to this record
 

 
Author Gobin, A.; Kersebaum, K.; Eitzinger, J.; Trnka, M.; Hlavinka, P.; Takáč, J.; Kroes, J.; Ventrella, D.; Marta, A.; Deelstra, J.; Lalić, B.; Nejedlik, P.; Orlandini, S.; Peltonen-Sainio, P.; Rajala, A.; Saue, T.; Şaylan, L.; Stričevic, R.; Vučetić, V.; Zoumides, C. url  doi
openurl 
  Title Variability in the Water Footprint of Arable Crop Production across European Regions Type Journal Article
  Year 2017 Publication Water Abbreviated Journal Water  
  Volume 9 Issue 2 Pages 93  
  Keywords  
  Abstract Crop growth and yield are affected by water use during the season: the green water footprint (WF) accounts for rain water, the blue WF for irrigation and the grey WF for diluting agri-chemicals. We calibrated crop yield for FAO’s water balance model “Aquacrop” at field level. We collected weather, soil and crop inputs for 45 locations for the period 1992–2012. Calibrated model runs were conducted for wheat, barley, grain maize, oilseed rape, potato and sugar beet. The WF of cereals could be up to 20 times larger than the WF of tuber and root crops; the largest share was attributed to the green WF. The green and blue WF compared favourably with global benchmark values (R² = 0.64–0.80; d = 0.91–0.95). The variability in the WF of arable crops across different regions in Europe is mainly due to variability in crop yield (c̅v̅ = 45%) and to a lesser extent to variability in crop water use (c̅v̅ = 21%). The WF variability between countries (c̅v̅ = 14%) is lower than the variability between seasons (c̅v̅ = 22%) and between crops (c̅v̅ = 46%). Though modelled yields increased up to 50% under sprinkler irrigation, the water footprint still increased between 1% and 25%. Confronted with drainage and runoff, the grey WF tended to overestimate the contribution of nitrogen to the surface and groundwater. The results showed that the water footprint provides a measurable indicator that may support European water governance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4441 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4988  
Permanent link to this record
 

 
Author Vitti, C.; Stellacci, A.M.; Leogrande, R.; Mastrangelo, M.; Cazzato, E.; Ventrella, D. url  doi
openurl 
  Title Assessment of organic carbon in soils: a comparison between the Springer–Klee wet digestion and the dry combustion methods in Mediterranean soils (Southern Italy) Type Journal Article
  Year 2016 Publication Catena Abbreviated Journal Catena  
  Volume 137 Issue Pages 113-119  
  Keywords  
  Abstract • Comparison of two methods for soil organic C quantification is presented. • Springer–Klee wet digestion and dry combustion with automated analyser were compared. • Soil samples were collected from three different sites in a Southern Italy area. • Recoveries close to one were observed for whole dataset and for data grouped per site. • The strong agreement between the methods would enable direct comparison of results. Abstract Soil organic carbon (SOC) is the largest carbon pool in the terrestrial biosphere and it is among the most important factors responsible for conservation of soil quality. Automated dry combustion techniques are gradually replacing traditional quantification methods based on wet digestion chemistry. Critical comparison of different methods is fundamental to reevaluate archives of SOC data and accurately assess and model long-term carbon stock variation and should be performed for different soil types and management conditions. Two analytical methods, the Springer–Klee wet digestion and the dry combustion using an automated analyser, were compared for soils typical of a Mediterranean environment in Southern Italy. Soil samples were collected from three sites, at two depths. Soils were fine textured (from clay–loam to clay) with total carbonate ranging from 6.6 to 16.7 g 100 g− 1. SOC content varied from 6.92 to 28.86 g kg− 1 (as average of the two methods), with values and ranges typical of Southern Europe. On average, Springer–Klee method gave slightly higher values and showed greater data variability. This behaviour, in agreement with other studies, can be attributed to the reaction of K2Cr2O7 with other soil constituents and to analytical constraints. Our results suggest high consistency between Springer–Klee and dry combustion techniques and show recoveries close to one both for the whole dataset and for data grouped per experimental site or soil depth. Linear regression equations between the two methods were slightly affected by different soil types (P = 0.0621). The best fitting of the relationship was a linear regression passing through the origin for the whole dataset (Radj2 = 0.965; RPD = 3.41). The strong overall agreement observed between the two methods would enable the direct comparison of new data set with those already existing in Southern Italy for soils with similar characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0341-8162 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4989  
Permanent link to this record
 

 
Author Leogrande, R.; Vitti, C.; Lopedota, O.; Ventrella, D.; Montemurro, F. url  doi
openurl 
  Title Effects of Irrigation Volume and Saline Water On Maize Yield and Soil in Southern Italy: Irrigation with saline water on maize Type Journal Article
  Year 2016 Publication Irrig. and Drain. Abbreviated Journal Irrig. and Drain.  
  Volume 65 Issue 3 Pages 243-253  
  Keywords  
  Abstract A field experiment was carried out in southern Italy to investigate the effects of irrigation and salinity on a maize crop and soil properties. The experiment was laid out comparing different irrigation rates (I1, I2, I3—re-establishing 50, 75 and 100% of the calculated maximum evapotranspiration) and water quality (FW, fresh water and SW, saline water). Grain yield was significantly greater by 60% in 2008 than in 2010. No significant difference was shown for grain yield between the irrigation treatments, whereas water productivity decreased significantly with increasing irrigation rates. Irrigation with saline water did not significantly reduce grain yield compared with fresh water, but it improved grain quality with higher protein content (9.1%) and lower grain moisture percentage (13.3%). Saline water determined a significant increase of saturated soil paste extract Na, ECe, SAR, some exchangeable cations and ESP compared with FW in both years. Furthermore, at the end of the experiment these parameters were lower than those at the end of the first maize crop. Lastly, in the saline treatment, at the end of the trial, the ECe and ESP values were below the critical threshold for soil salinization and/or sodification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1531-0353 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4990  
Permanent link to this record
 

 
Author Leogrande, R.; Lopedota, O.; Vitti, C.; Ventrella, D.; Montemurro, F. url  doi
openurl 
  Title Saline water and municipal solid waste compost application on tomato crop: Effects on plant and soil Type Journal Article
  Year 2016 Publication Journal of Plant Nutrition Abbreviated Journal  
  Volume 39 Issue 4 Pages 491-501  
  Keywords ftnotmacsur  
  Abstract A field experiment was conducted in Southern Italy to evaluate the effects of different water quality and fertilizers on yield performance of tomato crop. In mineral nitrogen (N) fertilizer and irrigation with fresh water (Electrical Conductivity, EC, = 0.9 dS m⁻¹) (FWF); mineral N fertilizer and irrigation with saline water (EC = 6.0 dS m⁻¹) (SWF); municipal solid waste (MSW) compost and irrigation with fresh water (EC = 0.9 dS m⁻¹) (FWC); MSW compost and irrigation with saline water (EC = 6.0 dS m⁻¹) (SWC). At harvest, weight and number of fruits and refractometric index (°Brix) were measured, total and marketable yield and dry matter of fruit were calculated. The results indicated that MSW compost, applied as amendment, could substitute the mineral fertilizer. In fact, in the treatments based on compost application, the tomato average marketable yield increased by 9% compared with treatments with mineral fertilizer. The marketable yield in the SWF and SWC treatments (with an average soil EC in two years to about 3.5 dS m⁻¹) decreased respectively of 20 and 10%, in respect to fresh water treatments. At the end of the experiment, application of compost significantly decreased the sodium absorption rate (SAR) of SWC treatment in respect of SWF (−29.9%). Significant differences were observed among the four treatments both on soil solution cations either exchangeable cations. In particular compost application increased the calcium (Ca) and potassium (K) contents in saturated soil paste respect to the SWF ones (31.4% and 59.5%, respectively). At the same time saturated soil paste sodium (Na) in SWC treatment recorded a decrease of 17.4% compared to SWF.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 4991  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: