|   | 
Details
   web
Records
Author Ventrella, D.; Stellacci, A.M.; Castrignanò, A.; Charfeddine, M.; Castellini, M.
Title Effects of crop residue management on winter durum wheat productivity in a long term experiment in Southern Italy Type Journal Article
Year 2016 Publication (up) European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 77 Issue Pages 188-198
Keywords Crop residue incorporation; Crop residue burning; Residual; autocorrelation; Mixed models; soil organic-matter; straw management; yield patterns; use efficiency; grain-yield; nitrogen; quality; systems; rotation; tillage
Abstract A long-term experiment comparing different crop residue (CR) managements was established in 1977 in Foggia (Apulia region, southern Italy). The objective of this study was to investigate the long-term effects of different types of crop residue management on main yield response parameters in a continuous cropping system of winter durum wheat. In order to correctly interpret the results, models accounting for spatial error autocorrelation were used and compared with ordinary least square models. Eight crop residue management treatments, based on burning of wheat straw and stubble or their incorporation with or without N fertilization and irrigation, were compared. The experimental design was a complete randomized block with five replicates. Results indicated that the dynamics of yield, grain protein content and hectolitric weight of winter durum wheat did not show any decline as usually expected when a monoculture is carried out for a long time. In addition, the temporal variability of productivity was more affected by meteorological factors, such as air temperature and rainfall, than CR management treatments. Higher wheat grain yields and hectolitric weights quite frequently occurred after burning of wheat straw compared with straw incorporation without nitrogen fertilization and autumn irrigation and this was attributed to temporary mineral N immobilization in the soil. The rate of 50 kg ha(-1) of N seemed to counterbalance this negative effect when good condition of soil moisture occurred in the autumn period, so yielding the same productive level of straw burning treatment. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4770
Permanent link to this record
 

 
Author Kollas, C.; Kersebaum, K.C.; Nendel, C.; Manevski, K.; Müller, C.; Palosuo, T.; Armas-Herrera, C.M.; Beaudoin, N.; Bindi, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Eitzinger, J.; Ewert, F.; Ferrise, R.; Gaiser, T.; Cortazar-Atauri, I.G. de; Giglio, L.; Hlavinka, P.; Hoffmann, H.; Hoffmann, M.P.; Launay, M.; Manderscheid, R.; Mary, B.; Mirschel, W.; Moriondo, M.; Olesen, J.E.; Öztürk, I.; Pacholski, A.; Ripoche-Wachter, D.; Roggero, P.P.; Roncossek, S.; Rötter, R.P.; Ruget, F.; Sharif, B.; Trnka, M.; Ventrella, D.; Waha, K.; Wegehenkel, M.; Weigel, H.-J.; Wu, L.
Title Crop rotation modelling—A European model intercomparison Type Journal Article
Year 2015 Publication (up) European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 70 Issue Pages 98-111
Keywords Model ensemble; Crop simulation models; Catch crop; Intermediate crop; Treatment; Multi-year; long-term experiment; climate-change; wheat production; n-fertilization; systems simulation; nitrogen dynamics; tillage intensity; winter-wheat; soil carbon; growth
Abstract • First model inter-comparison on crop rotations. • Continuous simulation of multi-year crop rotations yields outperformed single-year simulation. • Low accuracy of yield predictions in less commonly modelled crops such as potato, radish, grass vegetation. • Multi-model mean prediction was found to minimise the likely error arising from single-model predictions. • The representation of intermediate crops and carry-over effects in the models require further research efforts.

Diversification of crop rotations is considered an option to increase the resilience of European crop production under climate change. So far, however, many crop simulation studies have focused on predicting single crops in separate one-year simulations. Here, we compared the capability of fifteen crop growth simulation models to predict yields in crop rotations at five sites across Europe under minimal calibration. Crop rotations encompassed 301 seasons of ten crop types common to European agriculture and a diverse set of treatments (irrigation, fertilisation, CO2 concentration, soil types, tillage, residues, intermediate or catch crops). We found that the continuous simulation of multi-year crop rotations yielded results of slightly higher quality compared to the simulation of single years and single crops. Intermediate crops (oilseed radish and grass vegetation) were simulated less accurately than main crops (cereals). The majority of models performed better for the treatments of increased CO2 and nitrogen fertilisation than for irrigation and soil-related treatments. The yield simulation of the multi-model ensemble reduced the error compared to single-model simulations. The low degree of superiority of continuous simulations over single year simulation was caused by (a) insufficiently parameterised crops, which affect the performance of the following crop, and (b) the lack of growth-limiting water and/or nitrogen in the crop rotations under investigation. In order to achieve a sound representation of crop rotations, further research is required to synthesise existing knowledge of the physiology of intermediate crops and of carry-over effects from the preceding to the following crop, and to implement/improve the modelling of processes that condition these effects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4660
Permanent link to this record
 

 
Author Ventrella, D.
Title Climate change impact on green and blue water consumptive use for winter durum wheat and tomato cultivated in Southern Italy Type
Year 2015 Publication (up) FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-70
Keywords
Abstract In this study at regional scale, the model DSSAT was applied in order to simulate the cultivation of winter durum wheat and tomato to estimate the green water and the blue water through a dual-step approach (with and without supplemental irrigation). The model simulation covered a period of 30 years in three scenario including a reference period and two future scenarios based on forecasted global average temperature increase of 2 and 5°C. In this paper GW e BW contribution for evapotranspiration requirement is presented and analyzed on a distributed scale related to Puglia region (Southern Italy) characterized by high evaporative demand of the atmosphere. For winter durum wheat the GW component was predominant compared to BW, covering almost 90% of the ETc of WW. Under Baseline scenario the weight of BW was of 11%, slightly increasing in the future scenarios. After considering the probability the climate change determine an increase of irrigation practice for WW from climatic point of view we carried out an example of analysis in order to verify the economical convenience of supplemental irrigation for WW cultivation. The probability that irrigation has a negative or zero income ranged between 55 and 60% and the climate change did not impact the profitability of irrigation for WW as simulated for the economic and agro-pedoclimatic conditions of Puglia region considered in this study.For tomato, in the baseline and future scenarios affected by global warming, the analysis of ET components showed with strong evidence the importance of irrigation that is confirmed as irreplaceable practice for obtaining sustainable yield from productive and economical point of view.GW and BW, both in the case of wheat and tomato, appeared dependent on the spatial and temporal distribution of rainfall during the crop cycle, but also on the hydraulic characteristics of soils corresponding to each calculation unit. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2185
Permanent link to this record
 

 
Author Kersebaum, K.-C.; Wallor, E.; Ventrella, D.; Cammarano, D.; Choucheney, E.; Ewert, F.; Ferrise, R.; Gaiser, T.; Garofalo, P.; Giglio, L.; Giola, P.; Hoffmann, M.; Laan, M.; Lewan, E.; Maharjan, G.R.; Moriondo, M.; Mula, L.; Nendel, C.; Pohankova, E.; Roggero, P.P.; Trnka, M.; Trombi, G.
Title Comparison of site sensitivity of crop models using spatially variable field data from Precision Agriculture Type Report
Year 2017 Publication (up) FACCE MACSUR Reports Abbreviated Journal
Volume 10 Issue Pages C1.1-D2
Keywords
Abstract Site conditions and soil properties have a strong influence on impacts of climate change on crop production. Vulnerability of crop production to changing climate conditions is highly determined by the ability of the site to buffer periods of adverse climatic situations like water scarcity or excessive rainfall.  Therefore, the capability of models to reflect crop responses and water and nutrient dynamics under different site conditions is essential to assess climate impact even on a regional scale. To test and improve sensitivity of models to various site properties such as soil variability and hydrological boundary conditions, spatial variable data sets from precision farming of two fields in Germany and Italy were provided to modellers. For the German 20 ha field soil and management data for 60 grid points for 3 years (2 years wheat, 1 year triticale) were provided. For the Italian field (12 ha) information for 100 grid points were available for three growing seasons of durum wheat. Modellers were asked to run their models using a) the model specific procedure to estimate soil hydraulic properties from texture using their standard procedure and use in step b) fixed values for field capacity and wilting point derived from soil taxonomy. Only the phenology and crop yield of one grid point provided for a basic calibration. In step c) information for all grid points of the first year (yield, soil water and mineral N content for Germany, yield, biomass and LAI for Italy) were provided. First results of five out of twelve participating models are compared against measured state variables analysing their site specific response and consistency across crop and soil variables. (Main text to be published in a peer-reviewed journal)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Abstract
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4951
Permanent link to this record
 

 
Author Hlavinka, P.; Olesen, J.E.; Kersebaum, K.-C.; Trnka, M.; Pohankova, E.; Stella, T.; Ferrise, R.; Moriondo, M.; Hoogenbom, G.; Shelia, V.; Nendel, C.; Wimmerová, M.; Topaj, A.; Medvedev, S.; Ventrella, D.; Ruiz-Ramos, M.; Rodríguez Sánchez, A.; Takáč, J.; Patil, R.H.; Öztürk, I.; Hoffmann, M.; Gobin, A.; Rötter, R.P.
Title Modelling long term effects of cropping and managements systems on soil organic matter, C/N dynamics and crop growth Type Report
Year 2017 Publication (up) FACCE MACSUR Reports Abbreviated Journal
Volume 10 Issue Pages C1.3-D
Keywords
Abstract While simulation of cropping systems over a few years might reflect well the short term effects of management and cultivation, long term effects on soil properties and their consequences for crop growth and matter fluxes are not captured. Especially the effect on soil carbon sequestration/depletion is addressed by this task. Simulations of an ensemble of crop models are performed as transient runs over a period of 120 year using observed weather from three stations in Czech Republic (1961-2010) and transient long time climate change scenarios (2011-2080) from five GCM of the CMIP5 ensemble to assess the effect of different cropping and management systems on carbon sequestration, matter fluxes and crop production in an integrative way. Two cropping systems are regarded comprising two times winter wheat, silage maize, spring barley and oilseed rape. Crop rotations differ regarding their organic input from crop residues, nitrogen fertilization and implementation of catch crops. Models are applied for two soil types with different water holding capacity. Cultivation and nutrient management is adapted using management rules related to weather and soil conditions. Data of phenology and crop yield from the region of the regarded crops were provided to calibrate the models for crops of the rotations. Twelve models were calibrated in this first step. For the transient long term runs results of four models were submitted so far. Outputs are crop yields, nitrogen uptake, soil water and mineral nitrogen contents, as well as water and nitrogen fluxes to the atmosphere and groundwater. Changes in the carbon stocks and the consequences for nitrogen mineralisation, N fertilization and emissions also considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes XC Approved no
Call Number MA @ admin @ Serial 4976
Permanent link to this record