toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sollitto, D.; De Benedetto, D.; Castrignanò, A.; Crescimanno, G.; Provenzano, G.; Ventrella, D. url  doi
openurl 
  Title Spatial data fusion and analysis for soil characterization: a case study in a coastal basin of south-western Sicily (southern Italy) Type Journal Article
  Year 2012 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.  
  Volume 7 Issue 1 Pages 4  
  Keywords salinization risk; soil retention curve; geostatistics; factor Kriging; intrinsic random funciton  
  Abstract Salinization is one of the most serious problems confronting sustainable agriculture in semi-arid and arid regions. Accurate mapping of soil salinization and the associated risk represent a fundamental step in planning agricultural and remediation activities. Geostatistical analysis is very useful for soil quality assessment because it makes it possible to determine the spatial relationships between selected variables and to produce synthetic maps of spatial variation. The main objective of this paper was to map the soil salinization risk in the Delia-Nivolelli alluvial basin (south-western Sicily, southern Italy), using multivariate geostatistical techniques and a set of topographical, physical and soil hydraulic properties. Elevation data were collected from existing topographic maps and analysed preliminarily to improve the estimate precision of sparsely sampled primary variables. For interpolation multi-collocated cokriging was applied to the dataset, including textural and hydraulic properties and electrical conductivity measurements carried out on 128 collected soil samples, using elevation data as auxiliary variable. Spatial dependence among elevation and physical soil properties was explored with factorial kriging analysis (FKA) that could isolate and display the sources of variation acting at different spatial scales. FKA isolated significant regionalised factors which give a concise description of the complex soil physical variability at the different selected spatial scales. These factors mapped, allowed the delineation of zones at different salinisation risk to be managed separately to control and prevent salinization risk. The proposed methodology could be a valid support for land use and soil remediation planning at regional scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2039-6805 1125-4718 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4595  
Permanent link to this record
 

 
Author Ventrella, D.; Giglio, L.; Charfeddine, M.; Lopez, R.; Castellini, M.; Sollitto, D.; Castrignanò, A.; Fornaro, F. url  doi
openurl 
  Title Climate change impact on crop rotations of winter durum wheat and tomato in southern Italy: yield analysis and soil fertility Type Journal Article
  Year 2012 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.  
  Volume 7 Issue 1 Pages 15  
  Keywords DSSAT model; CENTURY-module; climate change; winter durum wheat; tomato, crop rotation  
  Abstract Cropping systems are affected by climate change because of the strong relationship between crop development, growth, yield, CO2 atmospheric concentration and climate conditions. The increasing temperatures and the reduction of available water resources may result in negative impacts on the agricultural activity in Mediterranean environments than other areas. In this study the CERES-Wheat and CROPGRO-Tomato models were used to assess the effects of climate change on winter wheat (Triticum durum L.) and processing tomato (Lycopersicon aesculentum Mill.) in one of most productive areas of Italy, located in the northern part of the Puglia region. In particular we have compared three different General Circulation Models (HadCM3, CCSM3, ECHAM5) subjected to a statistical downscaling under two future IPCC scenarios (B1 and A2). The analysis was carried out at regional scale repeating the simulations for seven homogeneous area characterizing the spatial variability of the region. In the second part of the study, considering only HadCM3 data set, climate change impact on long-term sequences of the two crops combined in three crop rotations were evaluated in terms of yield performances and soil fertility as indicated by the soil organic content of carbon and nitrogen. The comparison between GCMs showed no significant differences for winter durum wheat yield, while noticeable differences were found for yield and irrigation requirements of tomato. Under future scenarios, the production levels were reduced for tomato, whereas positive yield effects were observed for winter durum wheat. For winter durum wheat the simulation indicated that two- and three-year rotations, including one year of tomato cultivation, improved the cereal yield and this positive effect maintained its validity also in future scenarios. For both crops higher requirements of water and nitrogen were predicted under future scenarios. This result coupled with the decrease of yield caused negative reduction of water use efficiency and nitrogen use efficiency for tomato cultivation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2039-6805 1125-4718 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4481  
Permanent link to this record
 

 
Author Leogrande, R.; Lopedota, O.; Montemurro, F.; Vitti, C.; Ventrella, D. url  doi
openurl 
  Title Effects of irrigation regime and salinity on soil characteristics and yield of tomato Type Journal Article
  Year 2012 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.  
  Volume 7 Issue 1 Pages 8  
  Keywords saline water; irrigation volume; Lycopersicon esculentum; soil solution  
  Abstract A field experiment was conducted in Mediterranean conditions to evaluate the effects of different irrigation volumes and water quality on yield performance of tomato crop. The tomato crop was irrigated reestablishing 50 (I1), 75 (I2) and 100% (I3) of the crop evapotranspiration (ETc) with two water quality: fresh water with EC 0.9 dS m-1 (FW) and saline water with EC 6 dSm-1 (SW). At harvest, total and marketable yield, weight, number, total soluble solids (TSS) and dry matter of fruit were calculated, The results showed no statistical differences among the three different irrigation volumes on tomato yield and quality. The salinity treatment did not affect yield, probably because the soil salinity in the root zone on average remained below the threshold of tomato salt tolerance. Instead, salinity improved fruit quality parameters as dry matter and TSS by 13 and 8%, respectively. After the first field application of saline water, soil saturated extract cations (SSEC), electrical conductivity of soil paste extract (ECe), sodium absorption ratio (SAR) and exchangeable sodium percentage (ESP) cations increased; the largest increase of cations, in particular of Na, occurred in the top layer. At the end of the experiment, the absolute value of SSEC, ECe and SAR, for all the effects studied, were lower than those recorded in 2007. This behavior was suitable to the reduced volumes of treatments administered in 2009 in respect to the 2007. Furthermore, the higher total rainfall recorded in 2009 increased the leaching and downward movement of salts out of the sampling depth.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2039-6805 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4476  
Permanent link to this record
 

 
Author Bernardoni, E.; Acutis, M.; Ventrella, D. url  doi
openurl 
  Title Long-term durum wheat monoculture: modelling and future projection Type Journal Article
  Year 2012 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.  
  Volume 7 Issue 1 Pages 13  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2039-6805 1125-4718 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4468  
Permanent link to this record
 

 
Author Vitti, C.; Stellacci, A.M.; Leogrande, R.; Mastrangelo, M.; Cazzato, E.; Ventrella, D. url  doi
openurl 
  Title Assessment of organic carbon in soils: a comparison between the Springer–Klee wet digestion and the dry combustion methods in Mediterranean soils (Southern Italy) Type Journal Article
  Year 2016 Publication Catena Abbreviated Journal Catena  
  Volume 137 Issue Pages 113-119  
  Keywords  
  Abstract • Comparison of two methods for soil organic C quantification is presented. • Springer–Klee wet digestion and dry combustion with automated analyser were compared. • Soil samples were collected from three different sites in a Southern Italy area. • Recoveries close to one were observed for whole dataset and for data grouped per site. • The strong agreement between the methods would enable direct comparison of results. Abstract Soil organic carbon (SOC) is the largest carbon pool in the terrestrial biosphere and it is among the most important factors responsible for conservation of soil quality. Automated dry combustion techniques are gradually replacing traditional quantification methods based on wet digestion chemistry. Critical comparison of different methods is fundamental to reevaluate archives of SOC data and accurately assess and model long-term carbon stock variation and should be performed for different soil types and management conditions. Two analytical methods, the Springer–Klee wet digestion and the dry combustion using an automated analyser, were compared for soils typical of a Mediterranean environment in Southern Italy. Soil samples were collected from three sites, at two depths. Soils were fine textured (from clay–loam to clay) with total carbonate ranging from 6.6 to 16.7 g 100 g− 1. SOC content varied from 6.92 to 28.86 g kg− 1 (as average of the two methods), with values and ranges typical of Southern Europe. On average, Springer–Klee method gave slightly higher values and showed greater data variability. This behaviour, in agreement with other studies, can be attributed to the reaction of K2Cr2O7 with other soil constituents and to analytical constraints. Our results suggest high consistency between Springer–Klee and dry combustion techniques and show recoveries close to one both for the whole dataset and for data grouped per experimental site or soil depth. Linear regression equations between the two methods were slightly affected by different soil types (P = 0.0621). The best fitting of the relationship was a linear regression passing through the origin for the whole dataset (Radj2 = 0.965; RPD = 3.41). The strong overall agreement observed between the two methods would enable the direct comparison of new data set with those already existing in Southern Italy for soils with similar characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0341-8162 ISBN Medium  
  Area Expedition Conference  
  Notes (up) CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4989  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: