toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Carabano, M.J.; Logar, B.; Bormann, J.; Minet, J.; Vanrobays, M.L.; Diaz, C.; Tychon, B.; Gengler, N.; Hammami, H. doi  openurl
  Title Modeling heat stress under different environmental conditions Type Journal Article
  Year 2016 Publication Journal of Dairy Science Abbreviated Journal J. Dairy Sci.  
  Volume 99 Issue 5 Pages 3798-3814  
  Keywords Holstein cattle; heat stress model; climate change; somatic-cell score; lactating dairy-cows; dry-matter intake; milk-production; temperate climate; production traits; holstein cows; cattle; yield; weather; Agriculture; Food Science & Technology  
  Abstract Renewed interest in heat stress effects on livestock productivity derives from climate change, which is expected to increase temperatures and the frequency of extreme weather events. This study aimed at evaluating the effect of temperature and humidity on milk production in highly selected dairy cattle populations across 3 European regions differing in climate and production systems to detect differences and similarities that can be used to optimize heat stress (HS) effect modeling. Milk, fat, and protein test day data from official milk recording for 1999 to 2010 in 4 Holstein populations located in the Walloon Region of Belgium (BEL), Luxembourg (LUX), Slovenia (SLO), and southern Spain (SPA) were merged with temperature and humidity data provided by the state meteorological agencies. After merging, the number of test day records/cows per trait ranged from 686,726/49,655 in SLO to 1,982,047/136,746 in BEL. Values for the daily average and maximum temperature-humidity index (THIavg and THImax) ranges for THIavg/THImax were largest in SLO (22-74/28-84) and shortest in SPA (39-76/46-83). Change point techniques were used to determine comfort thresholds, which differed across traits and climatic regions. Milk yield showed an inverted U-shaped pattern of response across the THI scale with a HS threshold around 73 THImax units. For fat and protein, thresholds were lower than for milk yield and were shifted around 6 THI units toward larger values in SPA compared with the other countries. Fat showed lower HS thresholds than protein traits in all countries. The traditional broken line model was compared with quadratic and cubic fits of the pattern of response in production to increasing heat loads. A cubic polynomial model allowing for individual variation in patterns of response and THIavg as heat load measure showed the best statistical features. Higher/lower producing animals showed less/more persistent production (quantity and quality) across the THI scale. The estimated correlations between comfort and THIavg values of 70 (which represents the upper end of the THIavg scale in BEL-LUX) were lower for BEL-LUX (0.70-0.80) than for SPA (0.83-0.85). Overall, animals producing in the more temperate climates and semi-extensive grazing systems of BEL and LUX showed HS at lower heat loads and more re-ranking across the THI scale than animals producing in the warmer climate and intensive indoor system of SPA.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0302 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4745  
Permanent link to this record
 

 
Author (up) François, L.; Jacquemin, I.; Fontaine, C.; Minet, J.; Dury, M.; Tychon, B. url  openurl
  Title Implementing agricultural land-use in the CARAIB dynamic vegetation model Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract CARAIB (Dury et al., 2011) is a state-of-the-art dynamic vegetation model with various modules dealing with (i) soil hydrology, (ii) photosynthesis/stomatal regulation, (iii) carbon allocation and biomass growth, (iv) litter/soil carbon dynamics, (v) vegetation cover dynamics, (vi) seed dispersal, and (vii) vegetation fires. Climate and atmospheric CO2 are the primary inputs. The model calculates all major water and CO2/carbon fluxes and pools. It can be run with plant functional types or species (up to 100 different species) at various spatial scales, from the municipality to country or continental levels.   Within the VOTES project (Fontaine et al., 2013), the model has been improved to include crops and meadows, and some modules have been written to translate model outputs into quantitative indicators of ecosystem services (e.g., evaluate crop yield from net primary productivity or calculate soil erosion from runoff, slope, grown species and various soil attributes). The model was run over an area covering four municipalities in central Belgium, where land-use is dominated by crops, meadows, housing and some forests and was introduced in the model at the land parcel level. Simulations were also performed for the future. In these simulations, CARAIB was combined with the Aporia Agent-Based Model,  to project land-use changes up to 2050. This approach is currently extended within the MASC project (funded by Belgian Science Policy, BELSPO) to the whole Belgian territory (at 1 km2) and to Western Europe (at 20  km x 20 km).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5088  
Permanent link to this record
 

 
Author (up) Minet, J.; Laloy, E.; Tychon, B.; François, L. url  doi
openurl 
  Title Bayesian inversions of a dynamic vegetation model at four European grassland sites Type Journal Article
  Year 2015 Publication Biogeosciences Abbreviated Journal Biogeosciences  
  Volume 12 Issue 9 Pages 2809-2829  
  Keywords eddy-covariance data; terrestrial ecosystem model; bioclimatic affinity; groups; monte-carlo-simulation; dry-matter content; leaf-area; climate-change; stomatal conductance; parameter-estimation; plant  
  Abstract Eddy covariance data from four European grassland sites are used to probabilistically invert the CARAIB (CARbon Assimilation In the Biosphere) dynamic vegetation model (DVM) with 10 unknown parameters, using the DREAM((ZS)) (DiffeRential Evolution Adaptive Metropolis) Markov chain Monte Carlo (MCMC) sampler. We focus on comparing model inversions, considering both homoscedastic and heteroscedastic eddy covariance residual errors, with variances either fixed a priori or jointly inferred together with the model parameters. Agreements between measured and simulated data during calibration are comparable with previous studies, with root mean square errors (RMSEs) of simulated daily gross primary productivity (GPP), ecosystem respiration (RECO) and evapotranspiration (ET) ranging from 1.73 to 2.19, 1.04 to 1.56 g C m(-2) day(-1) and 0.50 to 1.28 mm day(-1), respectively. For the calibration period, using a homoscedastic eddy covariance residual error model resulted in a better agreement between measured and modelled data than using a heteroscedastic residual error model. However, a model validation experiment showed that CARAIB models calibrated considering heteroscedastic residual errors perform better. Posterior parameter distributions derived from using a heteroscedastic model of the residuals thus appear to be more robust. This is the case even though the classical linear heteroscedastic error model assumed herein did not fully remove heteroscedasticity of the GPP residuals. Despite the fact that the calibrated model is generally capable of fitting the data within measurement errors, systematic bias in the model simulations are observed. These are likely due to model inadequacies such as shortcomings in the photosynthesis modelling. Besides the residual error treatment, differences between model parameter posterior distributions among the four grassland sites are also investigated. It is shown that the marginal distributions of the specific leaf area and characteristic mortality time parameters can be explained by site-specific ecophysiological characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1726-4189 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4571  
Permanent link to this record
 

 
Author (up) Minet, J.; Laloy, E.; Tychon, B.; François, L. url  openurl
  Title Outcomes from the MACSUR grassland model inter-comparison with the model CARAIB Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords LiveM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference International Livestock Modelling and Research Colloquium, Bilbao, Spain, 2014-10-14 to 2014-10-16  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2642  
Permanent link to this record
 

 
Author (up) Minet, J.; Laloy, E.; Tychon, B.; François, L. url  openurl
  Title Bayesian inference of a dynamic vegetation model for grassland Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract As a part of the MACSUR task L2.4, we probabilistically calibrated the CARAIB dynamic vegetation model by Markov chain Monte Carlo (MCMC) simulation with the DREAMZS sampler. CARAIB is a mechanistic model that calculates the carbon assimilation of the vegetation as a function of the soil and climatic conditions, and can thus be used for simulating grassland production under cutting or grazing management. Bayesian model inversion was performed at 4 grassland sites across Europe: Oensingen, CH; Grillenburg, DE; Laqueuille, FR and Monte-Bodone, IT. Four daily measured variables from these sites: the Gross Primary Productivity (GPP), Net Ecosystem Exchange (NEE), Evapotranspiration (ET) and Soil Water Content (SWC) were used to sample 10 parameters related to rooting depth, stomatal conductance, specific leaf area, carbon-nitrogen ratio and water stresses. The maximized likelihood function therefore involved four objectives, whereas the applied Bayesian framework allowed for assessing the so called parameter posterior probability density function (pdf), which quantifies model parameter uncertainty caused by measurement and model errors. Sampling trials were performed using merged data from all sites (all-sites-sampling) and for each site (site-specific sampling) separately. The derived posterior parameter pdfs from the all-sites sampling and site-specific sampling runs showed differences in relation with the specificities of each site. Analysis of these distributions also revealed model sensitivity to parameters conditioned on the measured data, as well as parameter correlations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5057  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: