|   | 
Details
   web
Records
Author Grosz, B.; Dechow, R.; Gebbert, S.; Hoffmann, H.; Zhao, G.; Constantin, J.; Raynal, H.; Wallach, D.; Coucheney, E.; Lewan, E.; Eckersten, H.; Specka, X.; Kersebaum, K.-C.; Nendel, C.; Kuhnert, M.; Yeluripati, J.; Haas, E.; Teixeira, E.; Bindi, M.; Trombi, G.; Moriondo, M.; Doro, L.; Roggero, P.P.; Zhao, Z.; Wang, E.; Tao, F.; Roetter, R.; Kassie, B.; Cammarano, D.; Asseng, S.; Weihermueller, L.; Siebert, S.; Gaiser, T.; Ewert, F.
Title The implication of input data aggregation on up-scaling soil organic carbon changes Type Journal Article
Year 2017 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 96 Issue Pages 361-377
Keywords Biogeochemical model; Data aggregation; Up-scaling error; Soil organic carbon; DIFFERENT SPATIAL SCALES; NITROUS-OXIDE EMISSIONS; MODELING SYSTEM; DATA; RESOLUTION; CROP MODELS; CLIMATE; LONG; PRODUCTIVITY; CROPLANDS; DAYCENT
Abstract In up-scaling studies, model input data aggregation is a common method to cope with deficient data availability and limit the computational effort. We analyzed model errors due to soil data aggregation for modeled SOC trends. For a region in North West Germany, gridded soil data of spatial resolutions between 1 km and 100 km has been derived by majority selection. This data was used to simulate changes in SOC for a period of 30 years by 7 biogeochemical models. Soil data aggregation strongly affected modeled SOC trends. Prediction errors of simulated SOC changes decreased with increasing spatial resolution of model output. Output data aggregation only marginally reduced differences of model outputs between models indicating that errors caused by deficient model structure are likely to persist even if requirements on the spatial resolution of model outputs are low. (C)2017 Elsevier Ltd. All rights reserved.
Address 2017-09-14
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial (down) 5176
Permanent link to this record
 

 
Author Zhao, G.; Hoffmann, H.; Van Bussel, L.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Teixeira, E.; Grosz, B.; Doro, L.; Zhao, Z.; Nendel, C.; Raynal, H.; Eckersten, H.; Haas, E.; Kuhnert, M.; Lewan, E.; Bach, M.; Kersebaum, K.-C.; Roggero, P.P.; Rötter, R.; Wallach, D.; Krauss, G.; Siebert, S.; Gaiser, T.; Kiese, R.; Wang, E.; Ewert, F.
Title Weather data aggregation’s effects on simulation of cropping systems: a model, production system and crop comparison Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Interactions of climate, soil and management practices in cropping systems can be simulated at different scales to provide information for decision making. Low resolution simulation need less effort, but important details could be lost through data aggregation effects (DAEs). This paper aims to provide a general method to assess the DAEs on weather data and the simulation of cropping systems, and further investigate how the DAEs vary with changing crop models, crops, variables and production systems. A 30-year continuous cropping system was simulated for winter wheat and silage maize and potential, water-limited and water-nitrogen-limited production situations. Climate data of 1 km resolution and aggregations to resolutions of 10 to 100 km was used as input for the simulations. The data aggregation narrowed the variation of weather data and DAEs increased with increasingly coarser spatial resolution, causing the loss of hot spots in simulated results. Spatial patterns were similar across different resolutions. Consistent with DAEs on weather data, the DAEs on simulated yield (0 to 1.2 t ha-1 for winter wheat and 0 to 1.7 t ha-1 for silage maize), evapotranspiration (3 to 45 mm yr-1 for winter wheat and 4 to 40 mm yr-1 for silage maize), and water use efficiency (0.02 to 0.25 kg m-3­ for winter wheat and 0.04 to 0.4 kg m-3­ for silage maize), increased with coarser spatial resolution. Thus, if spatial information is needed for local management decisions, higher resolution is needed to adequately capture the spatial heterogeneity or hot spots in the region.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial (down) 5141
Permanent link to this record
 

 
Author Hoffmann, H.; Zhao, G.; Van Bussel, L.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Teixeira, E.; Grosz, B.; Doro, L.; Nendel, C.; Kiese, R.; Raynal, H.; Eckersten, H.; Haas, E.; Kuhnert, M.; Lewan, E.; Bach, M.; Kersebaum, K.-C.; Roggero, P.P.; Rötter, R.; Wallach, D.; Krauss, G.; Siebert, S.; Gaiser, T.; Wang, E.; Zhao, Z.; Ewert, F.
Title Effects of climate input data aggregation on modelling regional crop yields Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Crop models can be sensitive to climate input data aggregation and this response may differ among models. This should be considered when applying field-scale models for assessment of climate change impacts on larger spatial scales or when coupling models across scales. In order to evaluate these effects systematically, an ensemble of ten crop models was run with climate input data on different spatial aggregations ranging from 1, 10, 25, 50 and 100 km horizontal resolution for the state of North Rhine-Westphalia, Germany. Models were minimally calibrated to typical sowing and harvest dates, and crop yields observed in the region, subsequently simulating potential, water-limited and nitrogen-limited production of winter wheat and silage maize for 1982-2011. Outputs were analysed for 19 variables (yield, evapotranspiration, soil organic carbon, etc.). In this study the sensitivity of the individual models and the model ensemble in response to input data aggregation is assessed for crop yield. Results show that the mean yield of the region calculated from climate time series of 1 km horizontal resolution changes only little when using climate input data of higher aggregation levels for most models. However, yield frequency distributions change with aggregation, resembling observed data better with increasing resolution. With few exceptions, these results apply to the two crops and three production situations (potential, water-, nitrogen-limited) and across models including the model ensemble, regardless of differences among models in simulated yield levels and spatial yield patterns. Results of this study improve the confidence of using crop models at varying scales.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial (down) 5077
Permanent link to this record
 

 
Author Hoffmann, H.; Zhao, G.; Van Bussel, L.G.J.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.A.U.-, C.J.; Teixeira, E.; Grosz, B.; Doro, L.; Nendel, C.; Kiese, R.; Raynal, H.; Eckersten, H.; Haas, E.; Kuhnert, M.; Lewan, E.; Bach, M.; Kersebaum, K.-C.; Rötter, R.; Wallach, D.; Gaiser, T.; Ewert, F.
Title Effects of climate input data aggregation on modelling regional crop yields Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title CropM International Symposium and Workshop
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CropM International Symposium and Workshop, 2014-02-10 to 2014-02-12, Oslo, Norway
Notes Approved no
Call Number MA @ admin @ Serial (down) 5044
Permanent link to this record
 

 
Author Zhao, G.; Hoffmann, H.; Van Bussel, L.G.J.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Teixeira, E.; Doro, L.; Nendel, C.; Kiese, R.; Raynal, H.; Eckersten, H.; Haas, E.; Kuhnert, M.; Lewan, E.; Bach, M.; Kersebaum, K.-C.; Rötter, R.; Wallach, D.; Gaiser, T.; Ewert, F.
Title Responses of crop’s water use efficiency to weather data aggregation: a crop model ensemble study Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title CropM International Symposium and Workshop
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CropM International Symposium and Workshop, 2014-02-10 to 2014-02-12, Oslo, Norway
Notes Approved no
Call Number MA @ admin @ Serial (down) 5043
Permanent link to this record