|   | 
Details
   web
Records
Author Lotze-Campen, H.; von Lampe, M.; Kyle, P.; Fujimori, S.; Havlik, P.; van Meijl, H.; Hasegawa, T.; Popp, A.; Schmitz, C.; Tabeau, A.; Valin, H.; Willenbockel, D.; Wise, M.
Title (up) Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison Type Journal Article
Year 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.
Volume 45 Issue 1 Pages 103-116
Keywords energy demand; agricultural markets; general equilibrium modeling; partial equilibrium modeling; model comparison; greenhouse-gas emissions; land-use; energy; productivity; scenarios; policies; capture; storage; system
Abstract Integrated Assessment studies have shown that meeting ambitious greenhouse gas mitigation targets will require substantial amounts of bioenergy as part of the future energy mix. In the course of the Agricultural Model Intercomparison and Improvement Project (AgMIP), five global agro-economic models were used to analyze a future scenario with global demand for ligno-cellulosic bioenergy rising to about 100 ExaJoule in 2050. From this exercise a tentative conclusion can be drawn that ambitious climate change mitigation need not drive up global food prices much, if the extra land required for bioenergy production is accessible or if the feedstock, for example, from forests, does not directly compete for agricultural land. Agricultural price effects across models by the year 2050 from high bioenergy demand in an ambitious mitigation scenario appear to be much smaller (+5% average across models) than from direct climate impacts on crop yields in a high-emission scenario (+25% average across models). However, potential future scarcities of water and nutrients, policy-induced restrictions on agricultural land expansion, as well as potential welfare losses have not been specifically looked at in this exercise.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5150 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM Approved no
Call Number MA @ admin @ Serial 4532
Permanent link to this record
 

 
Author Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B.L.; Dietrich, J.P.; Doelmann, J.C.; Gusti, M.; Hasegawa, T.; Kyle, P.; Obersteiner, M.; Tabeau, A.; Takahashi, K.; Valin, H.; Waldhoff, S.; Weindl, I.; Wise, M.; Kriegler, E.; Lotze-Campen, H.; Fricko, O.; Riahi, K.; Vuuren, D.P. van
Title (up) Land-use futures in the shared socio-economic pathways Type Journal Article
Year 2017 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change
Volume 42 Issue Pages 331-345
Keywords Scenarios; Land use; Emissions; Mitigation; Food prices; Integrated assessment; SSP
Abstract • Narratives for the Shared Socio-Economic Pathways (SSPs) focusing on the land sector are presented. • Integrated Assessment Models have been applied for the SSPs to assess potential future developments for land use, greenhouse gas emissions, food provision and prices. • Model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures. • SSP-based land use pathways aim at supporting future climate research, climate impact analysis, biodiversity research and sustainability science. Abstract In the future, the land system will be facing new intersecting challenges. While food demand, especially for resource-intensive livestock based commodities, is expected to increase, the terrestrial system has large potentials for climate change mitigation through improved agricultural management, providing biomass for bioenergy, and conserving or even enhancing carbon stocks of ecosystems. However, uncertainties in future socio-economic land use drivers may result in very different land-use dynamics and consequences for land-based ecosystem services. This is the first study with a systematic interpretation of the Shared Socio-Economic Pathways (SSPs) in terms of possible land-use changes and their consequences for the agricultural system, food provision and prices as well as greenhouse gas emissions. Therefore, five alternative Integrated Assessment Models with distinctive land-use modules have been used for the translation of the SSP narratives into quantitative projections. The model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures with global agricultural land of 4900 mio ha in 2005 decreasing by 743 mio ha until 2100 at the lower (SSP1) and increasing by 1080 mio ha (SSP3) at the upper end. Greenhouse gas emissions from land use and land use change, as a direct outcome of these diverse land-use dynamics, and agricultural production systems differ strongly across SSPs (e.g. cumulative land use change emissions between 2005 and 2100 range from −54 to 402 Gt CO2). The inclusion of land-based mitigation efforts, particularly those in the most ambitious mitigation scenarios, further broadens the range of potential land futures and can strongly affect greenhouse gas dynamics and food prices. In general, it can be concluded that low demand for agricultural commodities, rapid growth in agricultural productivity and globalized trade, all most pronounced in a SSP1 world, have the potential to enhance the extent of natural ecosystems, lead to lowest greenhouse gas emissions from the land system and decrease food prices over time. The SSP-based land use pathways presented in this paper aim at supporting future climate research and provide the basis for further regional integrated assessments, biodiversity research and climate impact analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-3780 ISBN Medium
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 5006
Permanent link to this record
 

 
Author Stürck, J.; Levers, C.; van der Zanden, E.H.; Schulp, C.J.E.; Verkerk, P.J.; Kuemmerle, T.; Helming, J.; Lotze-Campen, H.; Tabeau, A.; Popp, A.; Schrammeijer, E.; Verburg, P.
Title (up) Simulating and delineating future land change trajectories across Europe Type Journal Article
Year 2015 Publication Regional Environmental Change Abbreviated Journal Reg. Environ. Change
Volume Issue Pages in press
Keywords land use change; land system; modeling; scenario; Europe; ecosystem services
Abstract Explorations of future land use change are important to understand potential conflicts between competing land uses, trade-offs associated with particular land change trajectories, and the effectiveness of policies to steer land systems into desirable states. Most model-based explorations and scenario studies focused on conversions in broad land use classes, but disregarded changes in land management or focused on individual sectors only. Using the European Union (EU) as a case study, we developed an approach to identifying typical combinations of land cover and management changes by combining the results of multimodel simulations in the agriculture and forest sectors for four scenarios from 2000 to 2040. We visualized land change trajectories by mapping regional hotspots of change. Land change trajectories differed in extent and spatial pattern across the EU and among scenarios, indicating trajectory-specific option spaces for alternative land system outcomes. In spite of the large variation in the area of change, similar hotspots of land change were observed among the scenarios. All scenarios indicate a stronger polarization of land use in Europe, with a loss of multifunctional landscapes. We analyzed locations subject to change by comparing location characteristics associated with certain land change trajectories. Results indicate differences in the location conditions of different land change trajectories, with diverging impacts on ecosystem service provisioning. Policy and planning for future land use needs to account for the spatial variation of land change trajectories to achieve both overarching and location-specific targets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1436-3798 ISBN Medium
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4996
Permanent link to this record
 

 
Author Valin, H.; Sands, R.D.; van der Mensbrugghe, D. and; Nelson, G.C.; Ahammad, H.; Blanc, E.; Bodirsky; Benjamin; Fujimori, S.; Hasegawa, T.; Havlik, P.; and Heyhoe, E.; Kyle, P.; Mason-D’Croz, D.; Paltsev; Sergey; Rolinski, S.; Tabeau, A.; van Meijl, H. and; von Lampe, M.; Willenbockel, D.
Title (up) The future of food demand: Understanding differences in global economic models Type Journal Article
Year 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.
Volume 45 Issue 1 Pages 51-67
Keywords world food demand; socioeconomic pathways; climate change; computable general equilibrium; partial equilibrium; systems
Abstract Understanding the capacity of agricultural systems to feed the world population under climate change requires projecting future food demand. This article reviews demand modeling approaches from 10 global economic models participating in the Agricultural Model Intercomparison and Improvement Project (AgMIP). We compare food demand projections in 2050 for various regions and agricultural products under harmonized scenarios of socioeconomic development, climate change, and bioenergy expansion. In the reference scenario (SSP2), food demand increases by 59-98% between 2005 and 2050, slightly higher than the most recent FAO projection of 54% from 2005/2007. The range of results is large, in particular for animal calories (between 61% and 144%), caused by differences in demand systems specifications, and in income and price elasticities. The results are more sensitive to socioeconomic assumptions than to climate change or bioenergy scenarios. When considering a world with higher population and lower economic growth (SSP3), consumption per capita drops on average by 9\% for crops and 18% for livestock. The maximum effect of climate change on calorie availability is -6% at the global level, and the effect of biofuel production on calorie availability is even smaller.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5150 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4752
Permanent link to this record
 

 
Author Ahammad, H.; Heyhoe, E.; Nelson, G.; Sands, R.; Fujimori, S.; Hasegawa, T.; van der Mensbrugghe, D.; Blanc, E.; Havlik, P.; Valin, H.; Kyle, P.; d’Croz, D.M.; Meijl, H.V.; Schmitz, C.; Lotze-Campen, H.; von Lampe, M.; Tabeau, A.
Title (up) The Role of International Trade under a Changing Climate: Insights from global economic modelling Type Book Chapter
Year 2015 Publication Abbreviated Journal
Volume Issue Pages 293-312
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Rome Editor Elbehri, A.
Language Summary Language Original Title
Series Editor Series Title Climate Change and Food Systems Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 5001
Permanent link to this record