toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Klein, D.; Luderer, G.; Kriegler, E.; Strefler, J.; Bauer, N.; Leimbach, M.; Popp, A.; Dietrich, J.P.; Humpenöder, F.; Lotze-Campen, H.; Edenhofer, O. url  doi
openurl 
  Title The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE Type Journal Article
  Year 2014 Publication Climatic Change Abbreviated Journal Clim. Change  
  Volume 123 Issue 3-4 Pages 705-718  
  Keywords land-use change; bio-energy; greenhouse gases; carbon-dioxide; climate-change; constraints; emissions; economics; storage; costs  
  Abstract This study investigates the use of bioenergy for achieving stringent climate stabilization targets and it analyzes the economic drivers behind the choice of bioenergy technologies. We apply the integrated assessment framework REMIND-MAgPIE to show that bioenergy, particularly if combined with carbon capture and storage (CCS) is a crucial mitigation option with high deployment levels and high technology value. If CCS is available, bioenergy is exclusively used with CCS. We find that the ability of bioenergy to provide negative emissions gives rise to a strong nexus between biomass prices and carbon prices. Ambitious climate policy could result in bioenergy prices of 70 $/GJ (or even 430 $/GJ if bioenergy potential is limited to 100 EJ/year), which indicates a strong demand for bioenergy. For low stabilization scenarios with BECCS availability, we find that the carbon value of biomass tends to exceed its pure energy value. Therefore, the driving factor behind investments into bioenergy conversion capacities for electricity and hydrogen production are the revenues generated from negative emissions, rather than from energy production. However, in REMIND modern bioenergy is predominantly used to produce low-carbon fuels, since the transport sector has significantly fewer low-carbon alternatives to biofuels than the power sector. Since negative emissions increase the amount of permissible emissions from fossil fuels, given a climate target, bioenergy acts as a complement to fossils rather than a substitute. This makes the short-term and long-term deployment of fossil fuels dependent on the long-term availability of BECCS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4529  
Permanent link to this record
 

 
Author (up) Kriegler, E.; Bauer, N.; Popp, A.; Humpenöder, F.; Leimbach, M.; Strefler, J.; Baumstark, L.; Bodirsky, B.L.; Hilaire, J.; Klein, D.; Mouratiadou, I.; Weindl, I.; Bertram, C.; Dietrich, J.-P.; Luderer, G.; Pehl, M.; Pietzcker, R.; Piontek, F.; Lotze-Campen, H.; Biewald, A.; Bonsch, M.; Giannousakis, A.; Kreidenweis, U.; Müller, C.; Rolinski, S.; Schultes, A.; Schwanitz, J.; Stevanovic, M.; Calvin, K.; Emmerling, J.; Fujimori, S.; Edenhofer, O. url  doi
openurl 
  Title Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century Type Journal Article
  Year 2017 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 42 Issue Pages 297-315  
  Keywords Shared Socio-economic Pathway; SSP5; Emission scenario; Energy transformation; Land-use change; Integrated assessment modeling  
  Abstract Highlights • The SSP5 scenarios mark the upper end of the scenario literature in fossil fuel use, food demand, energy use and greenhouse gas emissions. • The SSP5 marker scenario results in a radiative forcing pathway close to the highest Representative Concentration Pathway (RCP8.5). • An investigation of mitigation policies in SSP5 confirms high socio-economic challenges to mitigation in SSP5. • In SSP5, ambitious climate targets require land based carbon management options such as avoided deforestation and bioenergy production with CCS. • The SSP5 scenarios provide useful reference points for future climate change, impact, adaption, mitigation and sustainable development analysis. Abstract This paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 baseline scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, marking the upper end of the scenario literature in several dimensions. These scenarios are currently the only SSP scenarios that result in a radiative forcing pathway as high as the highest Representative Concentration Pathway (RCP8.5). This paper further investigates the direct impact of mitigation policies on the SSP5 energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. The SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5005  
Permanent link to this record
 

 
Author (up) Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; Lutz, W.; Popp, A.; Cuaresma, J.C.; KC, S.; Leimbach, M.; Jiang, L.; Kram, T.; Rao, S.; Emmerling, J.; Ebi, K.; Hasegawa, T.; Havlik, P.; Humpenöder, F.; Da Silva, L.A.; Smith, S.; Stehfest, E.; Bosetti, V.; Eom, J.; Gernaat, D.; Masui, T.; Rogelj, J.; Strefler, J.; Drouet, L.; Krey, V.; Luderer, G.; Harmsen, M.; Takahashi, K.; Baumstark, L.; Doelman, J.C.; Kainuma, M.; Klimont, Z.; Marangoni, G.; Lotze-Campen, H.; Obersteiner, M.; Tabeau, A.; Tavoni, M. url  doi
openurl 
  Title The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview Type Journal Article
  Year 2017 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 42 Issue Pages 153-168  
  Keywords Shared Socioeconomic Pathways; SSP; Climate change; RCP; Community scenarios; Mitigation; Adaptation  
  Abstract Abstract This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).  
  Address 2017-06-13  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5008  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: