|   | 
Details
   web
Records
Author (up) Ahmadi, B.V.; Shrestha, S.; Thomson, S.G.; Barnes, A.P.; Stott, A.W.
Title Health, welfare and profitability in Scottish sheep farms: assessing the impacts of CAP 2015 reforms Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords TradeM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 88th Annual Conference, Paris, France, 2014-04-09 to 2014-04-11
Notes Approved no
Call Number MA @ admin @ Serial 2275
Permanent link to this record
 

 
Author (up) Ahmadi, B.V.; Thomson, S.; Shrestha, S.; Stott, A.W.
Title Predicting the implications of CAP reform using a bio-economic modelling approach Type Conference Article
Year 2013 Publication Abbreviated Journal
Volume Issue Pages
Keywords LiveM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 133rd EAAE seminar Developing Integrated and Reliable Modeling Tools for Agricultural and Environmental Policy Analysis, Crete, Greece, 2013-06-15 to 2013-06-16
Notes Approved no
Call Number MA @ admin @ Serial 2274
Permanent link to this record
 

 
Author (up) Özkan Gülzari, Ş.; Vosough Ahmadi, B.; Stott, A.W.
Title Impact of subclinical mastitis on greenhouse gas emissions intensity and profitability of dairy cows in Norway Type Journal Article
Year 2018 Publication Preventive Veterinary Medicine Abbreviated Journal Preventive Veterinary Medicine
Volume 150 Issue Pages 19-29
Keywords Dairy cow; Dynamic programming; Greenhouse gas emissions intensity; Profitability; Subclinical mastitis; Whole farm modelling
Abstract Impaired animal health causes both productivity and profitability losses on dairy farms, resulting in inefficient use of inputs and increase in greenhouse gas (GHG) emissions produced per unit of product (i.e. emissions intensity). Here, we used subclinical mastitis as an exemplar to benchmark alternative scenarios against an economic optimum and adjusted herd structure to estimate the GHG emissions intensity associated with varying levels of disease. Five levels of somatic cell count (SCC) classes were considered namely 50,000 (i.e. SCC50), 200,000, 400,000, 600,000 and 800,000 cells/mL (milliliter) of milk. The effects of varying levels of SCC on milk yield reduction and consequential milk price penalties were used in a dynamic programming (DP) model that maximizes the profit per cow, represented as expected net present value, by choosing optimal animal replacement rates. The GHG emissions intensities associated with different levels of SCC were then computed using a farm-scale model (HolosNor). The total culling rates of both primiparous (PP) and multiparous (MP) cows for the five levels of SCC scenarios estimated by the model varied from a minimum of 30.9% to a maximum of 43.7%. The expected profit was the highest for cows with SCC200 due to declining margin over feed, which influenced the DP model to cull and replace more animals and generate higher profit under this scenario compared to SCC50. The GHG emission intensities for the PP and MP cows with SCC50 were 1.01 kg (kilogram) and 0.95 kg carbon dioxide equivalents (CO2e) per kg fat and protein corrected milk (FPCM), respectively, with the lowest emissions being achieved in SCC50. Our results show that there is a potential to reduce the farm GHG emissions intensity by 3.7% if the milk production was improved through reducing the level of SCC to 50,000 cells/mL in relation to SCC level 800,000 cells/mL. It was concluded that preventing and/or controlling subclinical mastitis consequently reduces the GHG emissions per unit of product on farm that results in improved profits for the farmers through reductions in milk losses, optimum culling rate and reduced feed and other variable costs. We suggest that further studies exploring the impact of a combination of diseases on emissions intensity are warranted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-5877 ISBN Medium
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5181
Permanent link to this record
 

 
Author (up) Özkan, Ş.; Vitali, A.; Lacetera, N.; Amon, B.; Bannink, A.; Bartley, D.J.; Blanco-Penedo, I.; de Haas, Y.; Dufrasne, I.; Elliott, J.; Eory, V.; Fox, N.J.; Garnsworthy, P.C.; Gengler, N.; Hammami, H.; Kyriazakis, I.; Leclère, D.; Lessire, F.; Macleod, M.; Robinson, T.P.; Ruete, A.; Sandars, D.L.; Shrestha, S.; Stott, A.W.; Twardy, S.; Vanrobays, M.L.; Ahmadi, B.V.; Weindl, I.; Wheelhouse, N.; Williams, A.G.; Williams, H.W.; Wilson, A.J.; Østergaard, S.; Kipling, R.P.
Title Challenges and priorities for modelling livestock health and pathogens in the context of climate change Type Journal Article
Year 2016 Publication Environmental Research Abbreviated Journal Environ. Res.
Volume 151 Issue Pages 130-144
Keywords
Abstract Climate change has the potential to impair livestock health, with consequences for animal welfare, productivity, greenhouse gas emissions, and human livelihoods and health. Modelling has an important role in assessing the impacts of climate change on livestock systems and the efficacy of potential adaptation strategies, to support decision making for more efficient, resilient and sustainable production. However, a coherent set of challenges and research priorities for modelling livestock health and pathogens under climate change has not previously been available. To identify such challenges and priorities, researchers from across Europe were engaged in a horizon-scanning study, involving workshop and questionnaire based exercises and focussed literature reviews. Eighteen key challenges were identified and grouped into six categories based on subject-specific and capacity building requirements. Across a number of challenges, the need for inventories relating model types to different applications (e.g. the pathogen species, region, scale of focus and purpose to which they can be applied) was identified, in order to identify gaps in capability in relation to the impacts of climate change on animal health. The need for collaboration and learning across disciplines was highlighted in several challenges, e.g. to better understand and model complex ecological interactions between pathogens, vectors, wildlife hosts and livestock in the context of climate change. Collaboration between socio-economic and biophysical disciplines was seen as important for better engagement with stakeholders and for improved modelling of the costs and benefits of poor livestock health. The need for more comprehensive validation of empirical relationships, for harmonising terminology and measurements, and for building capacity for under-researched nations, systems and health problems indicated the importance of joined up approaches across nations. The challenges and priorities identified can help focus the development of modelling capacity and future research structures in this vital field. Well-funded networks capable of managing the long-term development of shared resources are required in order to create a cohesive modelling community equipped to tackle the complex challenges of climate change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-9351 ISBN Medium Article
Area Expedition Conference
Notes LiveM Approved no
Call Number MA @ admin @ Serial 4766
Permanent link to this record
 

 
Author (up) Vosough Ahmadi, B.; Shrestha, S.; Thomson, S.G.; Barnes, A.P.; Stott, A.W.
Title Impacts of greening measures and flat rate regional payments of the Common Agricultural Policy on Scottish beef and sheep farms Type Journal Article
Year 2015 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.
Volume 153 Issue 04 Pages 676-688
Keywords CAP reform; models; level; water; Agriculture
Abstract The latest Common Agricultural Policy (CAP) reforms could bring substantial changes to Scottish farming communities. Two major components of this reform package, an introduction of environmental measures into the Pillar 1 payments and a move away from historical farm payments towards regionalized area payments, would have a significant effect on altering existing support structures for Scottish farmers, as it would for similar farm types elsewhere in Europe where historic payments are used. An optimizing farm-level model was developed to explore how Scottish beef and sheep farms might be affected by the greening and flat rate payments under the current CAP reforms. Nine different types of beef and sheep farms were identified and detailed biophysical and financial farm-level data for these farm types were used to parameterize the model. Results showed that the greening measures of the CAP did not have much impact on net margins of most of the beef and sheep farm businesses, except for ‘Beef Finisher’ farm types where the net margins decreased by 3%. However, all farm types were better off adopting the greening measures than not qualifying for the greening payments through non-compliance with the measures. The move to regionalized farm payments increased the negative financial impact of greening on most of the farms but it was still substantially lower than the financial sacrifice of not adopting greening measures. Results of maximizing farm net margin, under a hypothetical assumption of excluding farm payments, showed that in most of the mixed (sheep and cattle) and beef suckler cattle farms the optimum stock numbers predicted by the model were lower than actual figures on farm. When the regionalized support payments were allocated to each farm, the proportion of the mixed farms that would increase their stock numbers increased whereas this proportion decreased for beef suckler farms and no impact was predicted in sheep farms. Also under the regionalized support payments, improvements in profitability were found in mixed farms and sheep farms. Some of the specialized beef suckler farms also returned a profit when CAP support was added.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8596 1469-5146 ISBN Medium Article
Area Expedition Conference
Notes LiveM Approved no
Call Number MA @ admin @ Serial 4654
Permanent link to this record