|   | 
Details
   web
Records
Author (up) Sollitto, D.; De Benedetto, D.; Castrignanò, A.; Crescimanno, G.; Provenzano, G.; Ventrella, D.
Title Spatial data fusion and analysis for soil characterization: a case study in a coastal basin of south-western Sicily (southern Italy) Type Journal Article
Year 2012 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.
Volume 7 Issue 1 Pages 4
Keywords salinization risk; soil retention curve; geostatistics; factor Kriging; intrinsic random funciton
Abstract Salinization is one of the most serious problems confronting sustainable agriculture in semi-arid and arid regions. Accurate mapping of soil salinization and the associated risk represent a fundamental step in planning agricultural and remediation activities. Geostatistical analysis is very useful for soil quality assessment because it makes it possible to determine the spatial relationships between selected variables and to produce synthetic maps of spatial variation. The main objective of this paper was to map the soil salinization risk in the Delia-Nivolelli alluvial basin (south-western Sicily, southern Italy), using multivariate geostatistical techniques and a set of topographical, physical and soil hydraulic properties. Elevation data were collected from existing topographic maps and analysed preliminarily to improve the estimate precision of sparsely sampled primary variables. For interpolation multi-collocated cokriging was applied to the dataset, including textural and hydraulic properties and electrical conductivity measurements carried out on 128 collected soil samples, using elevation data as auxiliary variable. Spatial dependence among elevation and physical soil properties was explored with factorial kriging analysis (FKA) that could isolate and display the sources of variation acting at different spatial scales. FKA isolated significant regionalised factors which give a concise description of the complex soil physical variability at the different selected spatial scales. These factors mapped, allowed the delineation of zones at different salinisation risk to be managed separately to control and prevent salinization risk. The proposed methodology could be a valid support for land use and soil remediation planning at regional scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2039-6805 1125-4718 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4595
Permanent link to this record
 

 
Author (up) Ventrella, D.; Giglio, L.; Charfeddine, M.; Lopez, R.; Castellini, M.; Sollitto, D.; Castrignanò, A.; Fornaro, F.
Title Climate change impact on crop rotations of winter durum wheat and tomato in southern Italy: yield analysis and soil fertility Type Journal Article
Year 2012 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.
Volume 7 Issue 1 Pages 15
Keywords DSSAT model; CENTURY-module; climate change; winter durum wheat; tomato, crop rotation
Abstract Cropping systems are affected by climate change because of the strong relationship between crop development, growth, yield, CO2 atmospheric concentration and climate conditions. The increasing temperatures and the reduction of available water resources may result in negative impacts on the agricultural activity in Mediterranean environments than other areas. In this study the CERES-Wheat and CROPGRO-Tomato models were used to assess the effects of climate change on winter wheat (Triticum durum L.) and processing tomato (Lycopersicon aesculentum Mill.) in one of most productive areas of Italy, located in the northern part of the Puglia region. In particular we have compared three different General Circulation Models (HadCM3, CCSM3, ECHAM5) subjected to a statistical downscaling under two future IPCC scenarios (B1 and A2). The analysis was carried out at regional scale repeating the simulations for seven homogeneous area characterizing the spatial variability of the region. In the second part of the study, considering only HadCM3 data set, climate change impact on long-term sequences of the two crops combined in three crop rotations were evaluated in terms of yield performances and soil fertility as indicated by the soil organic content of carbon and nitrogen. The comparison between GCMs showed no significant differences for winter durum wheat yield, while noticeable differences were found for yield and irrigation requirements of tomato. Under future scenarios, the production levels were reduced for tomato, whereas positive yield effects were observed for winter durum wheat. For winter durum wheat the simulation indicated that two- and three-year rotations, including one year of tomato cultivation, improved the cereal yield and this positive effect maintained its validity also in future scenarios. For both crops higher requirements of water and nitrogen were predicted under future scenarios. This result coupled with the decrease of yield caused negative reduction of water use efficiency and nitrogen use efficiency for tomato cultivation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2039-6805 1125-4718 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4481
Permanent link to this record