toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kipling, R.P.; Bannink, A.; Bellocchi, G.; Dalgaard, T.; Fox, N.J.; Hutchings, N.J.; Kjeldsen, C.; Lacetera, N.; Sinabell, F.; Topp, C.F.E.; van Oijen, M.; Virkajärvi, P.; Scollan, N.D. url  openurl
  Title (up) Modelling European ruminant production systems: Facing the challenges of climate change Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 10 Issue Pages L1.1-D1  
  Keywords  
  Abstract Ruminant production systems are important producers of food, support rural communities and culture, and help to maintain a range of ecosystem services including the sequestering of carbon in grassland soils. However, these systems also contribute significantly to climate change through greenhouse gas (GHG) emissions, while intensi- fication of production has driven biodiversity and nutrient loss, and soil degradation. Modeling can offer insights into the complexity underlying the relationships between climate change, management and policy choices, food production, and the maintenance of ecosystem services. This paper 1) provides an overview of how ruminant systems modeling supports the efforts of stakeholders and policymakers to predict, mitigate and adapt to climate change and 2) provides ideas for enhancing modeling to fulfil this role. Many grassland models can predict plant growth, yield and GHG emissions from mono-specific swards, but modeling multi-species swards, grassland quality and the impact of management changes requires further development. Current livestock models provide a good basis for predicting animal production; linking these with models of animal health and disease is a prior- ity. Farm-scale modeling provides tools for policymakers to predict the emissions of GHG and other pollutants from livestock farms, and to support the management decisions of farmers from environmental and economic standpoints. Other models focus on how policy and associated management changes affect a range of economic and environmental variables at regional, national and European scales. Models at larger scales generally utilise more empirical approaches than those applied at animal, field and farm-scales and include assumptions which may not be valid under climate change conditions. It is therefore important to continue to develop more realistic representations of processes in regional and global models, using the understanding gained from finer-scale modeling. An iterative process of model development, in which lessons learnt from mechanistic models are ap- plied to develop ‘smart’ empirical modeling, may overcome the trade-off between complexity and usability. De- veloping the modeling capacity to tackle the complex challenges related to climate change, is reliant on closer links between modelers and experimental researchers, and also requires knowledge-sharing and increasing technical compatibility across modeling disciplines. Stakeholder engagement throughout the process of model development and application is vital for the creation of relevant models, and important in reducing problems re- lated to the interpretation of modeling outcomes. Enabling modeling to meet the demands of policymakers and other stakeholders under climate change will require collaboration within adequately-resourced, long-term inter-disciplinary research networks  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Abstract  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 4947  
Permanent link to this record
 

 
Author Schönhart, M.; Schauppenlehner, T.; Schmid, E.; Sinabell, F. url  openurl
  Title (up) Regional Pilot Case Study Mostviertel – AT: Preliminary Results Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract An integrated modelling framework (IMF) is developed to analyse impacts of climate andpolicy changes on farm welfare and the environment. The IMF is applied on two contrasting grassland (south) and cropland (north) dominated Austrian landscapes. The IMF combines the crop rotation model CropRota, the bio-physical process model EPIC and the bio-economic farm model FAMOS[space] and applies combined climate change and policy scenarios. Changing policies reduce farm gross margins by -36% and -5% in the two landscapes respectively. Climate change increases gross margins and farms can reach pre-reform levels on average. Climate induced intensification such as removing of landscape elements andincreasing fertilization can be moderated by an agri-environmental program (AEP). However, productivity gains from climate change increase the opportunity costs for AEP participation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5120  
Permanent link to this record
 

 
Author Schönhart, M.; Sinabell, F. openurl 
  Title (up) Scenarios for the Austrian agricultural sector until 2025 considering greenhouse gas mitigation Type Conference Article
  Year 2015 Publication Jahrbuch der ÖGA Abbreviated Journal  
  Volume 25 Issue Pages 231-240  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Agrarian Perspectives XXIV, 25th Annual Conference of the Austrian Society of Agricultural Economics, 2015-09-16 to 2015-09-18, Prague  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 5028  
Permanent link to this record
 

 
Author Banse, M.; Brouwer, F.; Palatnik, R.R.; Sinabell, F. url  openurl
  Title (up) The Economics of European Agriculture under Conditions of Climate Change (Editorial) Type Journal Article
  Year 2014 Publication German Journal of Agricultural Economics Abbreviated Journal German Journal of Agricultural Economics  
  Volume 63 Issue 3 Pages 131-132  
  Keywords  
  Abstract This Special Issue on “The Economics of European Agriculture under Conditions of Climate Change” brings together a selection of papers that contribute to the understanding of recent developments related to agriculture and climate change in four European coun- tries. The focus of the Special Issue is on quantitative modeling and empirical analyses. The papers presented here not only cover the heterogeneity of agriculture in Europe with case studies from the Mediterranean (Italy), central (Austria) and north-western Europe (Ireland and Scotland) but also give insights into the diversity of quantitative modeling approaches in agriculture.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Editorial material  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4763  
Permanent link to this record
 

 
Author Brouwer, F.; Sinabell, F. url  openurl
  Title (up) Three years of collaboration in TradeM – Agricultural markets and prices Type Conference Article
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages SP6-4  
  Keywords  
  Abstract Some farmers may claim that climate change adaptation is easy compared to the difficulties caused by policiesAction based on weather observations only, is insufficient for farmers to respond to climate change. Researchers need support from farmers in understanding the responses in practice.Policies might be too slow to respond to needs for change in agriculture. Winners and losers seem to be observed everywhere.The impacts of climate change is heterogeneous among farm types and regionsEffects beyond 2050 remain largely unclear, mainly because the effects of extreme events are not consideredVariability of yields is important to farm incomes, but most studies only consider average changesFarmers are ready to design their site-specific adaptation response providing that new knowledge and learning spaces are available. A learning process based on integrated models, assessment of short- and long-term effects, is needed for farmers to adapt to climate change, price fluctuations and policy change. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Brussels Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Climate-change impacts on farming systems in the next decades: Why worry when you have CAP? A FACCE MACSUR workshop for policymakers  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2343  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: