toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhao, G.; Webber, H.; Hoffmann, H.; Wolf, J.; Siebert, S.; Ewert, F. doi  openurl
  Title The implication of irrigation in climate change impact assessment: a European-wide study Type Journal Article
  Year 2015 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 21 Issue 11 Pages 4031-4048  
  Keywords CO2 effects; Lintul; Simplace; climate change; crop model; irrigation; water availability; yield change  
  Abstract (up) This study evaluates the impacts of projected climate change on irrigation requirements and yields of six crops (winter wheat, winter barley, rapeseed, grain maize, potato, and sugar beet) in Europe. Furthermore, the uncertainty deriving from consideration of irrigation, CO2 effects on crop growth and transpiration, and different climate change scenarios in climate change impact assessments is quantified. Net irrigation requirement (NIR) and yields of the six crops were simulated for a baseline (1982-2006) and three SRES scenarios (B1, B2 and A1B, 2040-2064) under rainfed and irrigated conditions, using a process-based crop model, SIMPLACE <LINTUL5, DRUNIR, HEAT>. We found that projected climate change decreased NIR of the three winter crops in northern Europe (up to 81 mm), but increased NIR of all the six crops in the Mediterranean regions (up to 182 mm yr(-1)). Climate change increased yields of the three winter crops and sugar beet in middle and northern regions (up to 36%), but decreased their yields in Mediterranean countries (up to 81%). Consideration of CO2 effects can alter the direction of change in NIR for irrigated crops in the south and of yields for C3 crops in central and northern Europe. Constraining the model to rainfed conditions for spring crops led to a negative bias in simulating climate change impacts on yields (up to 44%), which was proportional to the irrigation ratio of the simulation unit. Impacts on NIR and yields were generally consistent across the three SRES scenarios for the majority of regions in Europe. We conclude that due to the magnitude of irrigation and CO2 effects, they should both be considered in the simulation of climate change impacts on crop production and water availability, particularly for crops and regions with a high proportion of irrigated crop area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4716  
Permanent link to this record
 

 
Author Webber, H.; Ewert, F.; Olesen, J.E.; Müller, C.; Fronzek, S.; Ruane, A.C.; Bourgault, M.; Martre, P.; Ababaei, B.; Bindi, M.; Ferrise, R.; Finger, R.; Fodor, N.; Gabaldón-Leal, C.; Gaiser, T.; Jabloun, M.; Kersebaum, K.-C.; Lizaso, J.I.; Lorite, I.J.; Manceau, L.; Moriondo, M.; Nendel, C.; Rodríguez, A.; Ruiz-Ramos, M.; Semenov, M.A.; Siebert, S.; Stella, T.; Stratonovitch, P.; Trombi, G.; Wallach, D. doi  openurl
  Title Diverging importance of drought stress for maize and winter wheat in Europe Type Journal Article
  Year 2018 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume 9 Issue Pages 4249  
  Keywords Climate-Change Impacts; Air CO2 Enrichment; Food Security; Heat-Stress; Nitrogen Dynamics; Semiarid Environments; Canopy Temperature; Simulation-Model; Crop Production; Elevated CO2  
  Abstract (up) Understanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984-2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.  
  Address 2018-10-25  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5211  
Permanent link to this record
 

 
Author Zhao, G.; Hoffmann, H.; van Bussel, L.G.J.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.L.; Constantin, J.; Raynal, H.; Teixeira, E.; Grosz, B.; Doro, L.; Zhao, Z.G.; Nendel, C.; Kiese, R.; Eckersten, H.; Haas, E.; Vanuytrecht, E.; Wang, E.; Kuhnert, M.; Trombi, G.; Moriondo, M.; Bindi, M.; Lewan, E.; Bach, M.; Kersebaum, K.C.; Rotter, R.; Roggero, P.P.; Wallach, D.; Cammarano, D.; Asseng, S.; Krauss, G.; Siebert, S.; Gaiser, T.; Ewert, F. url  doi
openurl 
  Title Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 141-157  
  Keywords crop model; model comparison; spatial resolution; data aggregation; spatial heterogeneity; scaling; climate-change scenarios; sub-saharan africa; winter-wheat; spatial-resolution; yield response; input data; systems simulation; large-scale; soil data; part i  
  Abstract (up) We assessed the weather data aggregation effect (DAE) on the simulation of cropping systems for different crops, response variables, and production conditions. Using 13 process-based crop models and the ensemble mean, we simulated 30 yr continuous cropping systems for 2 crops (winter wheat and silage maize) under 3 production conditions for the state of North Rhine-Westphalia, Germany. The DAE was evaluated for 5 weather data resolutions (i.e. 1, 10, 25, 50, and 100 km) for 3 response variables including yield, growing season evapotranspiration, and water use efficiency. Five metrics, viz. the spatial bias (Delta), average absolute deviation (AAD), relative AAD, root mean squared error (RMSE), and relative RMSE, were used to evaluate the DAE on both the input weather data and simulated results. For weather data, we found that data aggregation narrowed the spatial variability but widened the., especially across mountainous areas. The DAE on loss of spatial heterogeneity and hotspots was stronger than on the average changes over the region. The DAE increased when coarsening the spatial resolution of the input weather data. The DAE varied considerably across different models, but changed only slightly for different production conditions and crops. We conclude that if spatially detailed information is essential for local management decision, higher resolution is desirable to adequately capture the spatial variability for heterogeneous regions. The required resolution depends on the choice of the model as well as the environmental condition of the study area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4754  
Permanent link to this record
 

 
Author Zhao, G.; Hoffmann, H.; Yeluripati, J.; Xenia, S.; Nendel, C.; Coucheney, E.; Kuhnert, M.; Tao, F.; Constantin, J.; Raynal, H.; Teixeira, E.; Grosz, B.; Doro, L.; Kiese, R.; Eckersten, H.; Haas, E.; Cammarano, D.; Kassie, B.; Moriondo, M.; Trombi, G.; Bindi, M.; Biernath, C.; Heinlein, F.; Klein, C.; Priesack, E.; Lewan, E.; Kersebaum, K.-C.; Rötter, R.; Roggero, P.P.; Wallach, D.; Asseng, S.; Siebert, S.; Gaiser, T.; Ewert, F. url  doi
openurl 
  Title Evaluating the precision of eight spatial sampling schemes in estimating regional means of simulated yield for two crops Type Journal Article
  Year 2016 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 80 Issue Pages 100-112  
  Keywords Crop model; Stratified random sampling; Simple random sampling; Clustering; Up-scaling; Model comparison; Precision gain; species distribution models; systems simulation; weather data; large-scale; design; soil; optimization; growth; apsim; autocorrelation  
  Abstract (up) We compared the precision of simple random sampling (SimRS) and seven types of stratified random sampling (StrRS) schemes in estimating regional mean of water-limited yields for two crops (winter wheat and silage maize) that were simulated by fourteen crop models. We found that the precision gains of StrRS varied considerably across stratification methods and crop models. Precision gains for compact geographical stratification were positive, stable and consistent across crop models. Stratification with soil water holding capacity had very high precision gains for twelve models, but resulted in negative gains for two models. Increasing the sample size monotonously decreased the sampling errors for all the sampling schemes. We conclude that compact geographical stratification can modestly but consistently improve the precision in estimating regional mean yields. Using the most influential environmental variable for stratification can notably improve the sampling precision, especially when the sensitivity behavior of a crop model is known.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4724  
Permanent link to this record
 

 
Author Hoffmann, H.; Zhao, G.; Asseng, S.; Bindi, M.; Biernath, C.; Constantin, J.; Coucheney, E.; Dechow, R.; Doro, L.; Eckersten, H.; Gaiser, T.; Grosz, B.; Heinlein, F.; Kassie, B.T.; Kersebaum, K.-C.; Klein, C.; Kuhnert, M.; Lewan, E.; Moriondo, M.; Nendel, C.; Priesack, E.; Raynal, H.; Roggero, P.P.; Rötter, R.P.; Siebert, S.; Specka, X.; Tao, F.; Teixeira, E.; Trombi, G.; Wallach, D.; Weihermüller, L.; Yeluripati, J.; Ewert, F. url  doi
openurl 
  Title Impact of spatial soil and climate input data aggregation on regional yield simulations Type Journal Article
  Year 2016 Publication PLoS One Abbreviated Journal PLoS One  
  Volume 11 Issue 4 Pages e0151782  
  Keywords systems simulation; nitrogen dynamics; winter-wheat; crop models; data resolution; scale; water; variability; calibration; weather  
  Abstract (up) We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4725  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: