toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rötter, R.P.; Semenov, M.A. url  openurl
  Title Development of methods for the probabilistic assessment of climate change impacts on crop production Type Report
  Year 2014 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 3 Issue Pages D-C4.4.1  
  Keywords (up)  
  Abstract Various attempts have been made to determine the relative importance of uncertainties in climate change impact assessments stemming from climate projections and crop models, respectively, and to analyse yield outputs probabilistically. For example, in the ENSEMBLES project, probabilistic climate projections (Harris et al. 2010) have been applied in conjunction with impact response surfaces (IRS), constructed by using impact models, to estimate the future likelihood (risk) of exceeding critical thresholds of crop yield impact (see, Fronzek et al., 2011, for an explanation of the method). In this task, we aimed to further develop and operationalize these methods and testing them in different case study regions in Europe. The method combines results of a sensitivity analysis of (one or more) impact model(s) with probabilistic projections of future temperature and precipitation (Fronzek et al., 2011). Such an overlay is one way of portraying probabilistic estimates of future impacts. By further accounting for the uncertainties in crop and biophysical parameters (using perturbed parameter approaches), the outcome represents an ensemble of impact risk estimates, encapsulating both climate and crop model uncertainties. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2233  
Permanent link to this record
 

 
Author Semenov, M.A. url  openurl
  Title Heat tolerance in wheat identified as a key trait for increased yield potential in Europe under climate change Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-60  
  Keywords (up)  
  Abstract To deliver food security for the 9 billon population in 2050, a 70% increase in world food supply will be required. Predicted climate change emphasises the need for breeding strategies that delivers both a substantial increase in yield potential and resilience to extreme weather events such as heat waves, late frost or severe drought. Heat stress around sensitive stages of wheat development has been identified as a possible threat to wheat production in Europe. However, no estimates have been made to assess yield losses due to increased frequency and magnitude of heat stress under climate change. Using existing experimental data, we refined the Sirius wheat model and incorporated effects of extreme temperature during flowering and grain filling on accelerated leaf senescence, grain number and grain weight. This allowed us, for the first time, to quantify yield losses resulting from heat stress under climate change. We used Sirius to design wheat ideotypes optimised for CMIP5-based climate scenarios for 2050 at 6 wheat growing areas in Europe. The yield potential for heat-tolerant ideotypes can be substantially increased compared with the current cultivars in the future by selecting optimal combination of wheat traits, e.g. optimal phenology and extended duration of grain filling. However, grain yield of heat-sensitive ideotypes was substantially lower and more variable in Hungary and Spain, because extending grain filling for increased yield potential was in conflict with high temperature episodes during flowering and grain filling. Despite much earlier flowering at these sites, the risk of heat stress affecting yields of heat-sensitive ideotypes remained high. Therefore, heat tolerance in wheat is likely to become a key trait for increased yield potential and yield stability in southern Europe in the future. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2175  
Permanent link to this record
 

 
Author Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, H.; Trnka, M.; Kersebaum, K.; Christian,; Olesen, J.E.; Van Ittersum, M.K.; Janssen, S.; Rivington, M.; Semenov, M.A.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Gaiser, T.; Palosuo, T.; Tao, F.; Nendel, C.; Roggero, P.P.; Bartošová, L.; Asseng, S. url  openurl
  Title Crop modelling for integrated assessment of risk to food production from climate change Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-C0.3  
  Keywords (up)  
  Abstract The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess climate change risks to food production and to which extent crop models comply with IAM demands. Considerable progress has been made in modelling effects of climate variables, where crop models best satisfy IAM demands. Demands are partly satisfied for simulating commonly required assessment variables. However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming these limitations will require joint efforts, and consideration of novel modelling approaches. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2089  
Permanent link to this record
 

 
Author Semenov, M.A.; Stratonovitch P openurl 
  Title ELPIS: delivering local-scale climate scenarios for impact assessments. Impacts World 2013 Type Conference Article
  Year 2013 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Impacts World 2013, International Conference on Climate Change Effects, Potsdam, Germany, 2013-05-27 to 2013-05-30  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2817  
Permanent link to this record
 

 
Author Nendel, C.; Thorburn, P.; Melzer, D.; Cerri, C.E.P.; Claessens, L.; Aggarwal, P.K.; Adam, M.; Angulo, C.; Asseng, S.; Baron, C.; Basso, B.; Bassu, S.; Bertuzzi, P.; Biernath, C.; Boogaard, H.; Boote, K.J.; Brisson, N.; Cammarano, D.; Conijn, S.; Corbeels, M.; Deryng, D.; Sanctis, G.D.; Doltra, J.; Durand, J.L.; Ewert, F.; Gayler, S.; Goldberg, R.; Grant, R.; Grassini, P.; Heng, L.; Hoek, S.B.; Hooker, J.A.U.-, L.A.H.; Ingwersen, J.; Izaurralde, C.; Jongschaap, R.; Kemanian, A.; Kersebaum, K.C.; Lizaso, J.; Makowski, D.; Martre, P.; Müller, C.; Kim, S.H.; Kumar, S.N.; O’Leary, G.; Olesen, J.E.; Osborne, T.; Palosuo, T.; Pravia, M.V.; Priesack, E.; Ripoche, D.A.U.-, R.P.R.; Sau, F.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.L.; Teixeira, E.; Timlin, D.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Wolf, J. url  openurl
  Title Soil nitrogen mineralisation simulated by crop models across different environments and the consequences for model improvement Type Conference Article
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin (Germany) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference International Crop Modelling Symposium iCROPM 2016, 2016-05-15 to 2016-05-17, Berlin, Germany  
  Notes Approved no  
  Call Number MA @ admin @ Serial 4903  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: