toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fronzek, S.; Pirttioja, N.; Carter, T.R.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.-F.; Dumont, B.; Ewert, F.; Ferrise, R.; François, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.C.; Kollas, C.; Krzyszczak, J.; Lorite, I.J.; Minet, J.; Minguez, M.I.; Montesino, M.; Moriondo, M.; Müller, C.; Nendel, C.; Öztürk, I.; Perego, A.; Rodríguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rötter, R.P. url  openurl
  Title Classifying simulated wheat yield responses to changes in temperature and precipitation across a European transect Type (up) Conference Article
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin (Germany) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference International Crop Modelling Symposium iCROPM 2016, 2016-05-15 to 2016-05-17, Berlin, Germany  
  Notes Approved no  
  Call Number MA @ admin @ Serial 4921  
Permanent link to this record
 

 
Author Ferrise, R.; Moriondo, M.; Pasqui, M.; Primicerio, J.; Toscano, P.; Semenov, M.; Bindi, M. url  openurl
  Title Within-season predictions of durum wheat yield over the Mediterranean Basin Type (up) Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Crop yield is the result of the interactions between weather in the incoming season and how farmers decide to manage and protect their crops. According to Jones et al. (2000), uncertainties in the weather of the forthcoming season leads farmers to lose some productivity by taking management decisions based on their own experience of the climate or by adopting conservative strategies aimed at reducing the risks. Accordingly, predicting crop yield in advance, in response to different managements, environments and weathers would assist farm-management decisions(Lawless and Semenov, 2005). Following the approach described by Semenov and Doblas-Reyes (2007), this study aimed at assessing the utility of different seasonal forecasting methodologies in predicting durum wheat yield at 10 different sites across the Mediterranean Basin. The crop model, SiriusQuality (Martre et al., 2006), was used to compute wheat yield over a 10-years period. First, the model was run with a set of observed weather data to calculate the reference yield distributions. Then, starting from 1st January, yield predictions were produced at a monthly time-step using seasonal forecasts. The results were compared with the reference yields to assess the efficacy of the forecasting methodologies to estimate within-season yields. The results indicate that  durum wheat phenology and yield can be accurately predicted under Mediterranean conditions well before crop maturity, although some differences between the sites and the forecasting methodologies were revealed. Useful information can be thus provided for helping farmers to reduce negative impacts or take advantage from favorable conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5142  
Permanent link to this record
 

 
Author Semenov, M.A. url  openurl
  Title Heat tolerance in wheat identified as a key trait for increased yield potential in Europe under climate change Type (up)
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-60  
  Keywords  
  Abstract To deliver food security for the 9 billon population in 2050, a 70% increase in world food supply will be required. Predicted climate change emphasises the need for breeding strategies that delivers both a substantial increase in yield potential and resilience to extreme weather events such as heat waves, late frost or severe drought. Heat stress around sensitive stages of wheat development has been identified as a possible threat to wheat production in Europe. However, no estimates have been made to assess yield losses due to increased frequency and magnitude of heat stress under climate change. Using existing experimental data, we refined the Sirius wheat model and incorporated effects of extreme temperature during flowering and grain filling on accelerated leaf senescence, grain number and grain weight. This allowed us, for the first time, to quantify yield losses resulting from heat stress under climate change. We used Sirius to design wheat ideotypes optimised for CMIP5-based climate scenarios for 2050 at 6 wheat growing areas in Europe. The yield potential for heat-tolerant ideotypes can be substantially increased compared with the current cultivars in the future by selecting optimal combination of wheat traits, e.g. optimal phenology and extended duration of grain filling. However, grain yield of heat-sensitive ideotypes was substantially lower and more variable in Hungary and Spain, because extending grain filling for increased yield potential was in conflict with high temperature episodes during flowering and grain filling. Despite much earlier flowering at these sites, the risk of heat stress affecting yields of heat-sensitive ideotypes remained high. Therefore, heat tolerance in wheat is likely to become a key trait for increased yield potential and yield stability in southern Europe in the future. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2175  
Permanent link to this record
 

 
Author Webber, H.; Martre, P.; Asseng, S.; Kimball, B.; White, J.; Ottman, M.; Wall, G.W.; De Sanctis, G.; Doltra, J.; Grant, R.; Kassie, B.; Maiorano, A.; Olesen, J.E.; Ripoche, D.; Rezaei, E.E.; Semenov, M.A.; Stratonovitch, P.; Ewert, F. doi  openurl
  Title Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison Type (up) Journal Article
  Year 2017 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 202 Issue Pages 21-35  
  Keywords Crop model comparison; Canopy temperature; Heat stress; Wheat  
  Abstract Even brief periods of high temperatures occurring around flowering and during grain filling can severely reduce grain yield in cereals. Recently, ecophysiological and crop models have begun to represent such phenomena. Most models use air temperature (Tair) in their heat stress responses despite evidence that crop canopy temperature (Tc) better explains grain yield losses. Tc can deviate significantly from Tair based on climatic factors and the crop water status. The broad objective of this study was to evaluate whether simulation of Tc improves the ability of crop models to simulate heat stress impacts on wheat under irrigated conditions. Nine process-based models, each using one of three broad approaches (empirical, EMP; energy balance assuming neutral atmospheric stability, EBN; and energy balance correcting for the atmospheric stability conditions, EBSC) to simulate Tc, simulated grain yield under a range of temperature conditions. The models varied widely in their ability to reproduce the measured Tc with the commonly used EBN models performing much worse than either EMP or EBSC. Use of Tc to account for heat stress effects did improve simulations compared to using only Tair to a relatively minor extent, but the models that additionally use Tc on various other processes as well did not have better yield simulations. Models that simulated yield well under heat stress had varying skill in simulating Tc. For example, the EBN models had very poor simulations of Tc but performed very well in simulating grain yield. These results highlight the need to more systematically understand and model heat stress events in wheat.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4824  
Permanent link to this record
 

 
Author Semenov, M.A.; Pilkington-Bennett, S.; Calanca, P. url  doi
openurl 
  Title Validation of ELPIS 1980-2010 baseline scenarios using the observed European Climate Assessment data set Type (up) Journal Article
  Year 2013 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 57 Issue 1 Pages 1-9  
  Keywords climate change; impact assessment; downscaling; lars-wg; stochastic weather generators; diverse canadian climates; lars-wg; aafc-wg; radiation; impacts  
  Abstract Local-scale daily climate scenarios are required for assessment of climate change impacts. ELPIS is a repository of local-scale climate scenarios for Europe, which are based on the LARS-WG weather generator and future projections from 2 multi-model ensembles, CMIP3 and EU-ENSEMBLES. In ELPIS, the site parameters for the 1980-2010 baseline scenarios were estimated by LARS-WG using daily weather from the European Crop Growth Monitoring System (CGMS) used in many European agricultural assessment studies. The objective of this paper was to compare ELPIS baseline scenarios with observed daily weather obtained independently from the European Climate Assessment (ECA) data set. Several statistical tests were used to compare distributions of climatic variables derived from ECA-observed daily weather and ELPIS-generated baseline scenarios. About 30% of selected sites have a difference in altitude of > 50 m compared with the CGMS grid-cell altitude that was selected to represent agricultural land within a grid-cell. Differences in altitude can explain significant Kolmogorov-Smirnov test (KS-test) results for distribution of daily temperature and in t-tests for temperature monthly means, because of the well-known negative correlation between temperature and elevation. For daily precipitation, the KS-test showed little difference between generated and observed data; however, the more sensitive t-test showed significant results for the sites where altitude differences were large. Approximately 11% of sites showed small positive or negative bias in monthly solar radiation, although 86% sites showed > 3 significant t-test results for monthly means. These results can be explained by differences in conversion of sunshine hours to solar radiation used in CGMS and LARS-WG. We conclude that, considering the limitations above, ELPIS baseline scenarios are suitable for agricultural impact assessments in Europe.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x 1616-1572 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4812  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: