toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Calanca, P.; Semenov, M.A. url  doi
openurl 
  Title Local-scale climate scenarios for impact studies and risk assessments: integration of early 21st century ENSEMBLES projections into the ELPIS database Type (up) Journal Article
  Year 2013 Publication Theoretical and Applied Climatology Abbreviated Journal Theor. Appl. Climatol.  
  Volume 113 Issue 3-4 Pages 445-455  
  Keywords stochastic weather generators; regional climate; lars-wg; daily; precipitation; models; simulation; europe; temperature; variability; heatwaves  
  Abstract We present the integration of early 21st century climate projections for Europe based on simulations carried out within the EU-FP6 ENSEMBLES project with the LARS-WG stochastic weather generator. The aim was to upgrade ELPIS, a repository of local-scale climate scenarios for use in impact studies and risk assessments that already included global projections from the CMIP3 ensemble and regional scenarios for Japan. To obtain a more reliable simulation of daily rainfall and extremes, changes in wet and dry series derived from daily ENSEMBLES outputs were taken into account. Kernel average smoothers were used to reduce noise arising from sampling artefacts. Examples of risk analyses based on 25-km climate projections from the ENSEMBLES ensemble of regional climate models illustrate the possibilities offered by the updated version of ELPIS. The results stress the importance of tailored information for local-scale impact assessments at the European level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-798x 1434-4483 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4484  
Permanent link to this record
 

 
Author Tao, F.; Roetter, R.P.; Palosuo, T.; Diaz-Ambrona, C.G.H.; Ines Minguez, M.; Semenov, M.A.; Kersebaum, K.C.; Nendel, C.; Cammarano, D.; Hoffmann, H.; Ewert, F.; Dambreville, A.; Martre, P.; Rodriguez, L.; Ruiz-Ramos, M.; Gaiser, T.; Hohn, J.G.; Salo, T.; Ferrise, R.; Bindi, M.; Schulman, A.H. doi  openurl
  Title Designing future barley ideotypes using a crop model ensemble Type (up) Journal Article
  Year 2017 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.  
  Volume 82 Issue Pages 144-162  
  Keywords Water-Use Efficiency; Climate-Change; Nitrogen Dynamics; Systems; Simulation; Wheat Cultivars; Grain Weight; Yield; Growth; Fertilization; Adaptation; Adaptation; Breeding; Climate change; Crop simulation models; Impact; Genotype; Genetic traits  
  Abstract Climate change and its associated higher frequency and severity of adverse weather events require genotypic adaptation. Process-based ecophysiological modelling offers a powerful means to better target and accelerate development of new crop cultivars. Barley (Hordeum vulgare L) is an important crop throughout the world, and a good model for study of the genetics of stress adaptation because many quantitative trait loci and candidate genes for biotic and abiotic stress tolerance have been identified in it. Here, we developed a new approach to design future crop ideotypes using an ensemble of eight barley simulation models (i.e. APSIM, CropSyst, HERMES, MCWLA, MONICA, SIMPLACE, Sirius Quality, and WOFOST), and applied it to design climate-resilient barley ideotypes for Boreal and Mediterranean climatic zones in Europe. The results showed that specific barley genotypes, represented by sets of cultivar parameters in the crop models, could be promising under future climate change conditions, resulting in increased yields and low inter-annual yield variability. In contrast, other genotypes could result in substantial yield declines. The most favorable climate-zone-specific barley ideotypes were further proposed, having combinations of several key genetic traits in terms of phenology, leaf growth, photosynthesis, drought tolerance, and grain formation. For both Boreal and Mediterranean climatic zones, barley ideotypes under future climatic conditions should have a longer reproductive growing period, lower leaf senescence rate, larger radiation use efficiency or maximum assimilation rate, and higher drought tolerance. Such characteristics can produce substantial positive impacts on yields under contrasting conditions. Moreover, barley ideotypes should have a low photoperiod and high vernalization sensitivity for the Boreal climatic zone; for the Mediterranean, in contrast, it should have a low photoperiod and low vernalization sensitivity. The drought-tolerance trait is more beneficial for the Mediterranean than for the Boreal climatic zone. Our study demonstrates a sound approach to design future barley ideotypes based on an ensemble of well-tested, diverse crop models and on integration of knowledge from multiple disciplines. The robustness of model-aided ideotypes design can be further enhanced by continuously improving crop models and enhancing information exchange between modellers, agro-meteorologists, geneticists, physiologists, and plant breeders. (C) 2016 Elsevier B.V. All rights reserved.  
  Address 2017-01-20  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_MACSUR Approved no  
  Call Number MA @ admin @ Serial 4935  
Permanent link to this record
 

 
Author Liu, B.; Asseng, S.; Müller, C.; Ewert, F.; Elliott, J.; Lobell, D. B.; Martre, P.; Ruane, A. C.; Wallach, D.; Jones, J. W.; Rosenzweig, C.; Aggarwal, P. K.; Alderman, P. D.; Anothai, J.; Basso, B.; Biernath, C.; Cammarano, D.; Challinor, A.; Deryng, D.; Sanctis, G. D.; Doltra, J.; Fereres, E.; Folberth, C.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L. A.; Izaurralde, R. C.; Jabloun, M.; Jones, C. D.; Kersebaum, K. C.; Kimball, B. A.; Koehler, A.-K.; Kumar, S. N.; Nendel, C.; O’Leary, G. J.; Olesen, J. E.; Ottman, M. J.; Palosuo, T.; Prasad, P. V. V.; Priesack, E.; Pugh, T. A. M.; Reynolds, M.; Rezaei, E. E.; Rötter, R. P.; Schmid, E.; Semenov, M. A.; Shcherbak, I.; Stehfest, E.; Stöckle, C. O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P.; Waha, K.; Wall, G. W.; Wang, E.; White, J. W.; Wolf, J.; Zhao, Z.; Zhu, Y. url  doi
openurl 
  Title Similar estimates of temperature impacts on global wheat yield by three independent methods Type (up) Journal Article
  Year 2016 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change  
  Volume 6 Issue 12 Pages 1130-1136  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1758-678x ISBN Medium article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4965  
Permanent link to this record
 

 
Author Barber, H.M.; Lukac, M.; Simmonds, J.; Semenov, M.A.; Gooding, M.J. url  doi
openurl 
  Title Temporally and Genetically Discrete Periods of Wheat Sensitivity to High Temperature Type (up) Journal Article
  Year 2017 Publication Frontiers in Plant Science Abbreviated Journal Front. Plant Sci  
  Volume 8 Issue Pages 51  
  Keywords  
  Abstract Successive single day transfers of pot-grown wheat to high temperature (35/30°C day/night) replicated controlled environments, from the second node detectable to the milky-ripe growth stages, provides the strongest available evidence that the fertility of wheat can be highly vulnerable to heat stress during two discrete peak periods of susceptibility: early booting [decimal growth stage (GS) 41-45] and early anthesis (GS 61-65). A double Gaussian fitted simultaneously to grain number and weight data from two contrasting elite lines (Renesansa, listed in Serbia, Ppd-D1a, Rht8; Savannah, listed in UK, Ppd-D1b, Rht-D1b) identified peak periods of main stem susceptibility centered on 3 (s.e. = 0.82) and 18 (s.e. = 0.55) days (mean daily temperature = 14.3°C) pre-GS 65 for both cultivars. Severity of effect depended on genotype, growth stage and their interaction: grain set relative to that achieved at 20/15°C dropped below 80% for Savannah at booting and Renesansa at anthesis. Savannah was relatively tolerant to heat stress at anthesis. A further experiment including 62 lines of the mapping, doubled-haploid progeny of Renesansa × Savannah found tolerance at anthesis to be associated with Ppd-D1b, Rht-D1b, and a QTL from Renesansa on chromosome 2A. None of the relevant markers were associated with tolerance during booting. Rht8 was never associated with heat stress tolerance, a lack of effect confirmed in a further experiment where Rht8 was included in a comparison of near isogenic lines in a cv. Paragon background. Some compensatory increases in mean grain weight were observed, but only when stress was applied during booting and only where Ppd-D1a was absent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-462x ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4974  
Permanent link to this record
 

 
Author Lake, I.R.; Jones, N.R.; Agnew, M.; Goodess, C.M.; Giorgi, F.; Hamaoui-Laguel, L.; Semenov, M.A.; Solomon, F.; Storkey, J.; Vautard, R.; Epstein, M.M. url  doi
openurl 
  Title Climate change and future pollen allergy in Europe Type (up) Journal Article
  Year 2017 Publication Environ Health Perspect Abbreviated Journal Environ Health Perspect  
  Volume 125 Issue 3 Pages 385-391  
  Keywords  
  Abstract BACKGROUND: Globally, pollen allergy is a major public health problem, but a fundamental unknown is the likely impact of climate change. To our knowledge, this is the first study to quantify the consequences of climate change upon pollen allergy in humans. OBJECTIVES: We produced quantitative estimates of the potential impact of climate change upon pollen allergy in humans, focusing upon common ragweed (Ambrosia artemisiifolia) in Europe. METHODS: A process-based model estimated the change in ragweed’s range under climate change. A second model simulated current and future ragweed pollen levels. These findings were translated into health burdens using a dose-response curve generated from a systematic review and from current and future population data. Models considered two different suites of regional climate/pollen models, two greenhouse gas emissions scenarios [Representative Concentration Pathways (RCPs) 4.5 and 8.5], and three different plant invasion scenarios. RESULTS: Our primary estimates indicated that sensitization to ragweed will more than double in Europe, from 33 to 77 million people, by 2041-2060. According to our projections, sensitization will increase in countries with an existing ragweed problem (e.g., Hungary, the Balkans), but the greatest proportional increases will occur where sensitization is uncommon (e.g., Germany, Poland, France). Higher pollen concentrations and a longer pollen season may also increase the severity of symptoms. Our model projections were driven predominantly by changes in climate (66%) but were also influenced by current trends in the spread of this invasive plant species. Assumptions about the rate at which ragweed spreads throughout Europe had a large influence upon the results. CONCLUSIONS: Our quantitative estimates indicate that ragweed pollen allergy will become a common health problem across Europe, expanding into areas where it is currently uncommon. Control of ragweed spread may be an important adaptation strategy in response to climate change. Citation: Lake IR, Jones NR, Agnew M, Goodess CM, Giorgi F, Hamaoui-Laguel L, Semenov MA, Solomon F, Storkey J, Vautard R, Epstein MM. 2017. Climate change and future pollen allergy in Europe. Environ Health Perspect 125:385-391; http://dx.doi.org/10.1289/EHP173.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0091-6765 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4981  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: