toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Tao, F.; Rötter, R.P.; Palosuo, T.; Hernández, C.G.; Mínguez, M.I.; Semenov, M.; Kersebaum, K.C.; Nendel, C.; Cammarano, D.; Hoffmann, H.; Ewert, F.; Dambreville, A.; Martre, P.; Rodríguez, L.; Ruiz-Ramos, M.; Gaiser, T.; Höhn, J.G.; Ferrise, R.; Bindi, M.; Schulman, A. url  openurl
  Title Using crop model ensembles to design future climate-resilient barley cultivars Type Conference Article
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin (Germany) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference International Crop Modelling Symposium iCROPM 2016, 2016-05-15 to 2016-05-17, Berlin, Germany  
  Notes Approved no  
  Call Number MA @ admin @ Serial 4898  
Permanent link to this record
 

 
Author (up) Trnka, M.; Feng, S.; Semenov, M.A.; Olesen, J.E.; Kersebaum, K.C.; Roetter, R.P.; Semeradova, D.; Klem, K.; Huang, W.; Ruiz-Ramos, M.; Hlavinka, P.; Meitner, J.; Balek, J.; Havlik, P.; Buntgen, U. doi  openurl
  Title Mitigation efforts will not fully alleviate the increase in water scarcity occurrence probability in wheat-producing areas Type Journal Article
  Year 2019 Publication Science Advances Abbreviated Journal Sci. Adv.  
  Volume 5 Issue 9 Pages eaau2406  
  Keywords climate-change impacts; sub-saharan africa; atmospheric co2; crop; yields; drought; agriculture; variability; irrigation; adaptation; carbon  
  Abstract Global warming is expected to increase the frequency and intensity of severe water scarcity (SWS) events, which negatively affect rain-fed crops such as wheat, a key source of calories and protein for humans. Here, we develop a method to simultaneously quantify SWS over the world’s entire wheat-growing area and calculate the probabilities of multiple/sequential SWS events for baseline and future climates. Our projections show that, without climate change mitigation (representative concentration pathway 8.5), up to 60% of the current wheat-growing area will face simultaneous SWS events by the end of this century, compared to 15% today. Climate change stabilization in line with the Paris Agreement would substantially reduce the negative effects, but they would still double between 2041 and 2070 compared to current conditions. Future assessments of production shocks in food security should explicitly include the risk of severe, prolonged, and near- simultaneous droughts across key world wheat-producing areas.  
  Address 2020-02-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5227  
Permanent link to this record
 

 
Author (up) Trnka, M.; Hlavinka, P.; Semenov, M.A. doi  openurl
  Title Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change Type Journal Article
  Year 2015 Publication Journal of the Royal Society Interface Abbreviated Journal J. R. Soc. Interface  
  Volume 12 Issue 112 Pages 20150721  
  Keywords climate change; extreme events; food security; winter wheat  
  Abstract Ways of increasing the production of wheat, the most widely grown cereal crop, will need to be found to meet the increasing demand caused by human population growth in the coming decades. This increase must occur despite the decrease in yield gains now being reported in some regions, increased price volatility and the expected increase in the frequency of adverse weather events that can reduce yields. However, if and how the frequency of adverse weather events will change over Europe, the most important wheat-growing area, has not yet been analysed. Here, we show that the accumulated probability of 11 adverse weather events with the potential to significantly reduce yield will increase markedly across all of Europe. We found that by the end of the century, the exposure of the key European wheat-growing areas, where most wheat production is currently concentrated, may increase more than twofold. However, if we consider the entire arable land area of Europe, a greater than threefold increase in risk was predicted. Therefore, shifting wheat production to new producing regions to reduce the risk might not be possible as the risk of adverse events beyond the key wheat-growing areas increases even more. Furthermore, we found a marked increase in wheat exposure to high temperatures, severe droughts and field inaccessibility compared with other types of adverse events. Our results also showed the limitations of some of the presently debated adaptation options and demonstrated the need for development of region-specific strategies. Other regions of the world could be affected by adverse weather events in the future in a way different from that considered here for Europe. This observation emphasizes the importance of conducting similar analyses for other major wheat regions.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-5689 1742-5662 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4819  
Permanent link to this record
 

 
Author (up) Trnka, M.; Hlavinka, P.; Wimmerová, M.; Pohanková, E.; Rötter, R.; Olesen, J.E.; Kersebaum, K.-C.; Semenov, M. url  openurl
  Title Paper on model responses to selected adverse weather conditions Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 10 Issue Pages C1.2-D  
  Keywords  
  Abstract Based on the Trnka et al. (2015) study that indicated that heat and drought will be the most important stress factors for most of the European what area the further effort focused on these two extremes. The crop model HERMES has been tested for its ability to replicate correctly drought stress, heat stress and combination of both stresses. While data on the drought stress were available for both field and growth chambers, heat stress and its combination with heat stress was available only for the growth chambers. The modified version of the HERMES crop model was developed by Dr. Kersebaum and is being currently prepared for the journal paper publication.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4954  
Permanent link to this record
 

 
Author (up) Trnka, M.; Rötter, R.P.; Ruiz-Ramos, M.; Kersebaum, K.C.; Olesen, J.E.; Žalud, Z.; Semenov, M.A. url  doi
openurl 
  Title Adverse weather conditions for European wheat production will become more frequent with climate change Type Journal Article
  Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change  
  Volume 4 Issue 7 Pages 637-643  
  Keywords scenarios; increase; models; variability; responses; extremes; impacts; shifts  
  Abstract Europe is the largest producer of wheat, the second most widely grown cereal crop after rice. The increased occurrence and magnitude of adverse and extreme agroclimatic events are considered a major threat for wheat production. We present an analysis that accounts for a range of adverse weather events that might significantly affect wheat yield in Europe. For this purpose we analysed changes in the frequency of the occurrence of 11 adverse weather events. Using climate scenarios based on the most recent ensemble of climate models and greenhouse gases emission estimates, we assessed the probability of single and multiple adverse events occurring within one season. We showed that the occurrence of adverse conditions for 14 sites representing the main European wheat-growing areas might substantially increase by 2060 compared to the present (1981-2010). This is likely to result in more frequent crop failure across Europe. This study provides essential information for developing adaptation strategies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1758-678x 1758-6798 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4545  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: