toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Pulina, A.; Lai, R.; Salis, L.; Seddaiu, G.; Roggero, P.P.; Bellocchi, G. url  doi
openurl 
  Title Modelling pasture production and soil temperature, water and carbon fluxes in Mediterranean grassland systems with the Pasture Simulation Model Type Journal Article
  Year 2018 Publication Grass and Forage Science Abbreviated Journal Grass Forage Sci.  
  Volume 73 Issue 2 Pages 272-283  
  Keywords grassland production; Mediterranean pastures; model calibration; PaSim; sheep grazing systems; soil respiration  
  Abstract Grasslands play important roles in agricultural production and provide a range of ecosystem services. Modelling can be a valuable adjunct to experimental research in order to improve the knowledge and assess the impact of management practices in grassland systems. In this study, the PaSim model was assessed for its ability to simulate plant biomass production, soil temperature, water content, and total and heterotrophic soil respiration in Mediterranean grasslands. The study site was the extensively managed sheep grazing system at the Berchidda‐Monti Observatory (Sardinia, Italy), from which two data sets were derived for model calibration and validation respectively. A new model parameterization was derived for Mediterranean conditions from a set of eco‐physiological parameters. With the exception of heterotrophic respiration (Rh), for which modelling efficiency (EF) values were negative, the model outputs were in agreement with observations (e.g., EF ranging from ~0.2 for total soil respiration to ~0.7 for soil temperature). These results support the effectiveness of PaSim to simulate C cycle components in Mediterranean grasslands. The study also highlights the need of further model development to provide better representation of the seasonal dynamics of Mediterranean annual species‐rich grasslands and associated peculiar Rh features, for which the modelling is only implicitly being undertaken by the current PaSim release.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium article  
  Area LiveM Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4973  
Permanent link to this record
 

 
Author Seddaiu, G.; Iocola, I.; Farina, R.; Orsini, R.; Iezzi, G.; Roggero, P.P. url  doi
openurl 
  Title Long term effects of tillage practices and N fertilization in rainfed Mediterranean cropping systems: durum wheat, sunflower and maize grain yield Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 77 Issue Pages 166-178  
  Keywords No tillage; Minimum tillage; Silty-clay soil; Yield stability; Recursive partitioning analysis; Rainfed cropping systems; northern Great-Plains; clay loam soil; nitrogen-fertilization; conventional tillage; winter-wheat; growth; quality; rotation; crops; water  
  Abstract Long term investigations on the combined effects of tillage systems and other agronomic practices such as mineral N fertilization under Mediterranean conditions on durum wheat are very scanty and findings are often contradictory. Moreover, no studies are available on the long term effect of the adoption of conservation tillage on grain yield of maize and sunflower grown in rotation with durum wheat under rainfed Mediterranean conditions. This paper reports the results of a 20-years experiment on a durum wheat-sunflower (7 years) and durum wheat–maize (13 years) two-year rotation, whose main objective was to quantify the long term effects of different tillage practices (CT = conventional tillage; MT = minimum tillage; NT = no tillage) combined with different nitrogen fertilizer rates (N0, N1, N2 corresponding to 0, 45 and 90 kg N ha−1 for sunflower, and 0, 90 and 180 kg N ha−1 for wheat and maize) on grain yield, yield components and yield stability for the three crops. In addition, the influence of meteorological factors on the interannual variability of studied variables was also assessed. For durum wheat, NT did not allow substantial yield benefits leading to comparable yields with respect to CT in ten out of twenty years. For both sunflower and maize, NT under rainfed conditions was not a viable options, because of the unsuitable (i.e., too wet) soil conditions of the clayish soil at sowing. Both spring crops performed well with MT. No significant N × tillage interaction was found for the three crops. As expected, the response of durum wheat and maize grain yield to N was remarkable, while sunflower grain yield was not significantly influenced by N rate. Wheat yield was constrained by high temperatures in January during tillering and drought in April during heading. The interannual yield variability of sunflower was mainly associated to soil water deficit at flowering and air temperature during seed filling. Heavy rains during this latter phase strongly constrained sunflower grain yield. Maize grain yield was negatively affected by high temperatures in June and drought in July, this latter factor was particularly important in the fertilized maize. Considering both yield and yield stability, durum wheat and sunflower performed better under MT and N1 while maize performed better under both CT and MT and with N2 rates. The results of this long term study are suitable for supporting policies on sustainable Mediterranean rainfed cropping systems and also for cropping system modelling.  
  Address 2016-07-22  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4722  
Permanent link to this record
 

 
Author Nguyen, T.P.L.; Seddaiu, G.; Roggero, P.P. url  doi
openurl 
  Title Declarative or procedural knowledge? Knowledge for enhancing farmers’ mitigation and adaptation behaviour to climate change Type Journal Article
  Year 2019 Publication Journal of Rural Studies Abbreviated Journal Journal of Rural Studies  
  Volume 67 Issue Pages 46-56  
  Keywords Farming systems; Knowledge; Attitude; Practice; Social construction  
  Abstract Climate change poses a major challenge for farmers, but agricultural sustainability, mitigation, and adaptation can effectively decrease climate impacts on agricultural systems. Changes in farming practices are necessary to reduce emissions and to adapt to climate change. However, such modifications to common practices depend, to a large extent, on farmers’ knowledge and attitudes towards climate risks. An empirical study of farmers’ attitudes and knowledge of climate change mitigation and adaptation practices is useful to understand how farmers’ knowledge influences their attitudes and practices towards climate change mitigation and adaptation. Based on a case study characterised by four agricultural farming systems (extensive dairy sheep, intensive dairy cattle, horticultural farming, and rice farming) in the Province of Oristano in Italy, this study contains an investigation of (i) farmers’ knowledge of climate change causes and effects, how they construct such knowledge, and how they adapt to the phenomenon; (ii) what and how are farmers’ attitudes towards climate change causes are shaped under their contextual social interests and values; and (iii) if their practices in responding to climate variability are influenced by their constructed knowledge. The research results showed that farmers’ declarative knowledge of climate change did not affect their adaptation practices but directed farmers’ attitudes towards climate change causes. The findings also underscore the necessity of facilitating social learning spaces for enhancing virtuous behaviours towards climate change mitigation and the sharing and co-production of procedural knowledge for developing shared sustainable climate adaptation practices at the farm level.  
  Address 2019-02-19  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0743-0167 ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5217  
Permanent link to this record
 

 
Author Ruiu, L.M.; Maurizi, S.; Sassu, S.; Seddaiu, G.; Zuin, O.; Blackmore, C.; Roggero, P.P. url  doi
openurl 
  Title Re-Staging La Rasgioni: lessons learned from transforming a traditional form of conflict resolution to engage stakeholders in agricultural water governance Type Journal Article
  Year 2017 Publication Water Abbreviated Journal Water  
  Volume 9 Issue 4 Pages 297  
  Keywords co-researching; dairy farming; ecosystem perception; systemic governance; governance learning; irrigation; knowledge co-production; nitrate pollution; social learning; stakeholders; theatre  
  Abstract This paper presents an informal process inspired by a public practice of conflict mediation used until a few decades ago in Gallura (NE Sardinia, Italy), named La Rasgioni (The Reason). The aim is twofold: (i) to introduce an innovative method that translates the complexity of water-related conflicts into a “dialogical tool”, aimed at enhancing social learning by adopting theatrical techniques; and (ii) to report the outcomes that emerged from the application of this method in Arborea, the main dairy cattle district and the only nitrate-vulnerable zone in Sardinia, to mediate contrasting positions between local entrepreneurs and representatives of the relevant institutions. We discuss our results in the light of four pillars, adopted as research lenses in the International research Project CADWAGO (Climate Change Adaptation and Water Governance), which consider the specific “social–ecological” components of the Arborea system, climate change adaptability in water governance institutions and organizations, systemic governance (relational) practices, and governance learning. The combination of the four CADWAGO pillars and La Rasgioni created an innovative dialogical space that enabled stakeholders and researchers to collectively identify barriers and opportunities for effective governance practices. Potential wider implications and applications of La Rasgioni process are also discussed in the paper.  
  Address 2017-04-24  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4441 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved yes  
  Call Number MA @ admin @ Serial 4944  
Permanent link to this record
 

 
Author Nguyen, T.; Mula, L.; Cortignani, R.; Seddaiu, G.; Dono, G.; Virdis, S.; Pasqui, M.; Roggero, P.-P. url  doi
openurl 
  Title Perceptions of present and future climate change impacts on water availability for agricultural systems in the western Mediterranean region Type Journal Article
  Year 2016 Publication Water Abbreviated Journal Water  
  Volume 8 Issue 11 Pages 523 (18 pp)  
  Keywords  
  Abstract Many Mediterranean countries have experienced water shortages during the last 20 years and future climate change projections foresee further pressure on water resources. This will have significant implications for irrigation water management in agricultural systems in the future. Through qualitative and quantitative empirical research methods carried out on a case study on four Mediterranean farming systems located in Oristano, Italy, we sought to understand the relationship between farmers’ perceptions of climate change (i.e., increased temperature and decreased precipitation) and of present and future water availability for agriculture as forecasted by climatic and crop models. We also explored asymmetries between farmers’ perceptions and present and future climate change and water scenarios as well as factors influencing perceptions. Our hypotheses were that farmers’ perceptions are the main drivers of actual water management practices and that sustainable practices can emerge from learning spaces designed from the understanding of the gaps between perceptions and scientific evidences. Results showed that most farmers perceived that climate change is occurring or will occur in their area. They also perceived that there has been an increased temperature trend, but also increased precipitation. Therefore, they are convinced that they have and will have enough irrigation water for agriculture in the near future, while climate change projections foresee an increasing pressure on water resources in the Mediterranean region. Such results suggest the need for (i) irrigation management policies that take into account farmers’ perceptions in order to promote virtuous behaviors and improve irrigation water use efficiency; (ii) new, well-designed learning spaces to improve the understanding on climate change expectations in the near future in order to support effective adaptive responses at the farm and catchment scales.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4441 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4879  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: