|   | 
Details
   web
Records
Author (up) König, H.J.; Helming, K.; Seddaiu, G.; Kipling, R.; Köchy, M.; Graversgaard, M.; van den Pol-van Dasselaar, A.; Nguyen, T.P.L.; Quaranta, G.; Salvia, R.; Sieber, S.; Ithes, S.; Kjeldsen, C.; Turner, K.G.; Dalgaard, T.; Roggero, P.P.
Title Stakeholder participation in agricultural research: Who should be involved, why, and how? Type Manuscript
Year Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Research in sustainable agricultural management requires appropriate participatory processes and tools enabling efficient dialogue and cooperation to allow researchers and stakeholders to co-produce knowledge. Research approaches that encourage stakeholder participation are in high demand because they allow a better understanding of human-nature interactions and interdependencies between actors. Participatory approaches also support multiple goals of agricultural management: improved productivity, food security, climate change adaptation, environmental conservation, rural development and policy decision making. Approaches to stakeholder engagement in the field of agricultural management research are manifold. Therefore, selecting the “right” approach depends on the specific purpose and contextualized issues at stake. We analyzed ten stakeholder approaches and propose a new framework with which to identify and select appropriate approaches for stakeholder engagement. The framework consists of three components: whom to engage (i.e., stakeholder type and mandate), why to engage (i.e., research purpose: consult, inform, collaborate), and how to engage (i.e., different methodological approaches). We identified different stakeholder groups (who?): farmers, agricultural actors, land users, and policymakers; different purposes (why?): facilitate engagement process, inform stakeholders, and obtain stakeholder perceptions; and different types of engagement methods (how?): participatory field experiments, desk simulations, interviews, panel discussions and different types of workshops. The framework was applied to arrange these approaches, organize them to improve understanding of their main strengths, weaknesses and supports for identifying and selecting an appropriate approach. We conclude that understanding the different facets of available approaches is crucial for selecting an appropriate stakeholder engagement approach. ;
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2564
Permanent link to this record
 

 
Author (up) Lai, R.; Arca, P.; Lagomarsino, A.; Cappai, C.; Seddaiu, G.; Demurtas, C.E.; Roggero, P.P.
Title Manure fertilization increases soil respiration and creates a negative carbon budget in a Mediterranean maize (Zea mays L.)-based cropping system Type Journal Article
Year 2017 Publication Catena Abbreviated Journal Catena
Volume 151 Issue Pages 202-212
Keywords Biomass C turnover GHG emission Microbial activity Soil moisture
Abstract Agronomic research is important to identify suitable options for improving soil carbon (C) sequestration and reducing soil CO2 emissions. Therefore, the objectives of this study were i) to analyse the on-farm effects of different nitrogen fertilization sources on soil respiration, ii) to explore the effect of fertilization on soil respiration sensitivity to soil temperature (T) and iii) to assess the effect of the different fertilization regimes on the soil C balance. We hypothesized that i) the soil CO2 emission dynamics in Mediterranean irrigated cropping systems were mainly affected by fertilization management and T and ii) fertilization affected the soil C budget via different C inputs and CO2 efflux. Four fertilization systems (farmyard manure, cattle slurry, cattle slurry + mineral, and mineral) were compared in a double-crop rotation based on silage maize (Zea mays L.) and a mixture of Italian ryegrass (Lolium multiflorum Lam.) and oats (Avena sativa L.). The research was performed in the dairy district of Arborea, in the coastal zone of Sardinia (Italy), from May 2011 to May 2012. The soil was a Psammentic Palexeralfs with a sandy texture (940 g sand kg− 1). The soil total respiration (SR), heterotrophic respiration (Rh), T and soil water content (SWC) were simultaneously measured in situ. The soil C balance was computed considering the Rh C losses and the soil C inputs from fertilizer and crop residues. The results showed that the maximum soil CO2 emission rates soon after the application of organic fertilizer reached values up to 12 μmol m− 2 s− 1. On average, the manure fertilizer showed significantly higher CO2 emissions, which resulted in a negative annual C balance (− 2.9 t ha− 1). T also affected the soil respiration temporal dynamics during the summer, consistently with results obtained in other temperate climatic regions that are characterized by wet summers and contrary to results from rainfed Mediterranean systems where the summer SR and Rh are constrained by the low SWC. The sensitivity of soil respiration to temperature significantly increased with C input from fertilizer. In conclusion, this research supported the hypotheses tested. Furthermore, the results indicated that i) soil CO2 efflux was significantly affected by fertilization management and T, and ii) fertilization with manure increased the soil respiration and resulted in a significantly negative soil C budget. This latter finding could be primarily explained by a reduction in productivity and, consequently, in crop residue with organic fertilization alone as compared to mineral, by the favourable SWC and T for mineralization, and by the sandy soil texture, which hindered the formation of macroaggregates and hence soil C stabilization, making fertilizer organic inputs highly susceptible to mineralization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0341-8162 ISBN Medium
Area Expedition Conference
Notes CropM, LiveM, ft_MACSUR Approved no
Call Number MA @ admin @ Serial 4931
Permanent link to this record
 

 
Author (up) Lai, R.; Arca, P.; Lagomarsino, A.; Cappai, C.; Seddaiu, G.; Demurtas, C.E.; Roggero, P.P.
Title Manure fertilization increases soil respiration and creates a negative carbon budget in a Mediterranean maize (Zea mays L.)-based cropping system Type Journal Article
Year 2017 Publication Catena Abbreviated Journal Catena
Volume 151 Issue Pages 202-212
Keywords Biomass; C turnover; GHG emission; Microbial activity; Soil moisture; Organic-Matter Dynamics; Co2 Efflux; N Fertilization; Forage Systems; Winter-Wheat; Nitrogen; Temperature; Forest; Water; Root
Abstract Agronomic research is important to identify suitable options for improving soil carbon (C) sequestration and reducing soil CO2 emissions. Therefore, the objectives of this study were i) to analyse the on-farm effects of different nitrogen fertilization sources on soil respiration, ii) to explore the effect of fertilization on soil respiration sensitivity to soil temperature (T) and iii) to assess the effect of the different fertilization regimes on the soil C balance. We hypothesized that i) the soil CO2 emission dynamics in Mediterranean irrigated cropping systems were mainly affected by fertilization management and T and ii) fertilization affected the soil C budget via different C inputs and CO2 efflux. Four fertilization systems (farmyard manure, cattle slurry, cattle slurry + mineral, and mineral) were compared in a double-crop rotation based on silage maize (Zea mays L) and a mixture of Italian ryegrass (Lolium multiflorum Lam.) and oats (Avena sativa L). The research was performed in the dairy district of Arborea, in the coastal zone of Sardinia (Italy), from May 2011 to May 2012. The soil was a Psammentic Palexeralfs with a sandy texture (940 g sand kg(-1)). The soil total respiration (SR), heterotrophic respiration (Rh), T and soil water content (SWC) were simultaneously measured in situ. The soil C balance was computed considering the Rh C losses and the soil C inputs from fertilizer and crop residues. The results showed that the maximum soil CO2 emission rates soon after the application of organic fertilizer reached values up to 121,1111 1 111(-2) s(-1). On average, the manure fertilizer showed significantly higher CO2 emissions, which resulted in a negative annual C balance (-2.9 t ha(-1)). T also affected the soil respiration temporal dynamics during the summer, consistently with results obtained in other temperate climatic regions that are characterized by wet summers and contrary to results from rainfed Mediterranean systems where the summer SR and Rh are constrained by the low SWC. The sensitivity of soil respiration to temperature significantly increased with C input from fertilizer. In conclusion, this research supported the hypotheses tested. Furthermore, the results indicated that i) soil CO2 efflux was significantly affected by fertilization management and T, and ii) fertilization with manure increased the soil respiration and resulted in a significantly negative soil C budget. This latter finding could be primarily explained by a reduction in productivity and, consequently, in crop residue with organic fertilization alone as compared to mineral, by the favourable SWC and T for mineralization, and by the sandy soil texture, which hindered the formation of macroaggregates and hence soil C stabilization, making fertilizer organic inputs highly susceptible to mineralization. (C) 2016 Elsevier B.V. All rights reserved.
Address 2017-03-16
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0341-8162 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_MACSUR Approved no
Call Number MA @ admin @ Serial 4939
Permanent link to this record
 

 
Author (up) Lai, R.; Seddaiu, G.; Gennaro, L.; Roggero, P.P.
Title Effects of nitrogen fertilizer sources and temperature on soil CO2 efflux in Italian ryegrass crop under Mediterranean conditions Type Journal Article
Year 2012 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.
Volume 7 Issue 2 Pages 27
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2039-6805 ISBN Medium Article
Area Expedition Conference
Notes LiveM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4478
Permanent link to this record
 

 
Author (up) Ma, S.; Acutis, M.; Barcza, Z.; Ben, T., H.; Doro, L.; Hidy, D.; Köchy, M.; Minet, J.; Lellei-Kovács, E.; Perego, A.; Rolinski, S.; Ruget, F.; Seddaiu, G.; Wu, L.; Bellocchi, G.
Title The grassland model intercomparison of the MACSUR (Modelling European Agriculture with Climate Change for Food Security) European knowledge hub Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords LiveM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 7th International Congress on Environmental Modelling and Software, 2014-06-15 to 2014-06-19
Notes Approved no
Call Number MA @ admin @ Serial 2618
Permanent link to this record