|   | 
Details
   web
Records
Author Nelson, G.C.; van der Mensbrugghe, D.; Ahammad, H.; Blanc, E.; Calvin, K.; Hasegawa, T.; Havlik, P.; Heyhoe, E.; Kyle, P.; Lotze-Campen, H.; von Lampe, M.; Mason, d’C., Daniel; van Meijl, H.; Müller, C.; Reilly, J.; Robertson, R.; Sands, R.D.; Schmitz, C.; Tabeau, A.; Takahashi, K.; Valin, H.; Willenbockel, D.
Title Agriculture and climate change in global scenarios: why don’t the models agree Type Journal Article
Year 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.
Volume 45 Issue 1 Pages 85-101
Keywords climate change impacts; economic models of agriculture; scenarios; system model; demand; CMIP5
Abstract Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs involves direct use of weather inputs (temperature, solar radiation available to the plant, and precipitation). Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes such as prices, production, and trade arising from differences in model inputs and model specification. This article presents climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. By harmonizing key drivers that include climate change effects, differences in model outcomes were reduced. The particular choice of climate change drivers for this comparison activity results in large and negative productivity effects. All models respond with higher prices. Producer behavior differs by model with some emphasizing area response and others yield response. Demand response is least important. The differences reflect both differences in model specification and perspectives on the future. The results from this study highlight the need to more fully compare the deep model parameters, to generate a call for a combination of econometric and validation studies to narrow the degree of uncertainty and variability in these parameters and to move to Monte Carlo type simulations to better map the contours of economic uncertainty.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0169-5150 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4536
Permanent link to this record
 

 
Author Lotze-Campen, H.; von Lampe, M.; Kyle, P.; Fujimori, S.; Havlik, P.; van Meijl, H.; Hasegawa, T.; Popp, A.; Schmitz, C.; Tabeau, A.; Valin, H.; Willenbockel, D.; Wise, M.
Title Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison Type Journal Article
Year 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.
Volume 45 Issue 1 Pages 103-116
Keywords energy demand; agricultural markets; general equilibrium modeling; partial equilibrium modeling; model comparison; greenhouse-gas emissions; land-use; energy; productivity; scenarios; policies; capture; storage; system
Abstract Integrated Assessment studies have shown that meeting ambitious greenhouse gas mitigation targets will require substantial amounts of bioenergy as part of the future energy mix. In the course of the Agricultural Model Intercomparison and Improvement Project (AgMIP), five global agro-economic models were used to analyze a future scenario with global demand for ligno-cellulosic bioenergy rising to about 100 ExaJoule in 2050. From this exercise a tentative conclusion can be drawn that ambitious climate change mitigation need not drive up global food prices much, if the extra land required for bioenergy production is accessible or if the feedstock, for example, from forests, does not directly compete for agricultural land. Agricultural price effects across models by the year 2050 from high bioenergy demand in an ambitious mitigation scenario appear to be much smaller (+5% average across models) than from direct climate impacts on crop yields in a high-emission scenario (+25% average across models). However, potential future scarcities of water and nutrients, policy-induced restrictions on agricultural land expansion, as well as potential welfare losses have not been specifically looked at in this exercise.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0169-5150 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM Approved no
Call Number MA @ admin @ Serial 4532
Permanent link to this record
 

 
Author Biewald, A.; Rolinski, S.; Lotze-Campen, H.; Schmitz, C.; Dietrich, J.P.
Title Valuing the impact of trade on local blue water Type Journal Article
Year 2014 Publication Ecological Economics Abbreviated Journal Ecol. Econ.
Volume 101 Issue Pages 43-53
Keywords virtual water; blue and green water; water scarcity; agricultural trade; global vegetation model; virtual water; crop trade; resources; scarcity; food; footprints; products; flows; green
Abstract International trade of agricultural goods impacts local water scarcity. By quantifying the effect of trade on crop production on grid-cell level and combining it with cell- and crop-specific virtual water contents, we are able to determine green and blue water consumption and savings. Connecting the information on trade-related blue water usage to water shadow prices gives us the possibility to value the impact of international food crop trade on local blue water resources. To determine the trade-related value of the blue water usage, we employ two models: first, an economic land- and water-use model, simulating agricultural trade, production and water-shadow prices and second, a global vegetation and agricultural model, modeling the blue and green virtual water content of the traded crops. Our study found that globally, the international trade of food crops saves blue water worth 2.4 billion US$. This net saving occurs despite the fact that Europe exports virtual blue water in food crops worth 3.1 billion US$. Countries in the Middle East and South Asia profit from trade by importing water intensive crops, countries in Southern Europe on the other hand export water intensive agricultural goods from water scarce sites, deteriorating local water scarcity. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0921-8009 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4512
Permanent link to this record
 

 
Author Wang, X.; Biewald, A.; Dietrich, J.P.; Schmitz, C.; Lotze-Campen, H.; Humpenöder, F.; Bodirsky, B.L.; Popp, A.
Title Taking account of governance: Implications for land-use dynamics, food prices, and trade patterns Type Journal Article
Year 2016 Publication Ecological Economics Abbreviated Journal Ecol. Econ.
Volume 122 Issue Pages 12-24
Keywords
Abstract Highlights • Governance impacts on land use dynamics are modeled at the global scale with an agro-economic dynamic optimization model. • Improved governance performance lowers deforestation, reduces cropland expansion and increases agricultural yield. • Good governance makes a decisive difference in investment for increasing yields in developing regions. • Weak governance increases food prices, particularly in Sub-Saharan Africa and Southeast Asia. • Improving governance performance has significant impacts on poverty reduction. Abstract Deforestation, mainly caused by unsustainable agricultural expansion, results in a loss of biodiversity and an increase in greenhouse gas emissions, as well as impinges on local livelihoods. Countries’ governance performance, particularly with respect to property rights security, exerts significant impacts on land-use patterns by affecting agricultural yield-related technological investment and cropland expansion. This study aims to incorporate governance factors into a recursive agro-economic dynamic model to simulate governance impacts on land-use patterns at the global scale. Due to the difficulties of including governance indicators directly into numerical models, we use lending interest rates as discount rates to reflect risk-accounting factors associated with different governance scenarios. In addition to a reference scenario, three scenarios with high, low and mixed divergent discount rates are formed to represent weak, strong and fragmented governance. We find that weak governance leads to slower yield growth, increased cropland expansion and associated deforestation, mainly in Latin America, Sub-Saharan Africa, South Asia and Southeast Asia. This is associated with increasing food prices, particularly in Sub-Saharan Africa and Southeast Asia. By contrast, strong governance performance provides a stable political and economic situation which may bring down deforestation rates, stimulate investment in agricultural technologies, and induce fairly strong decreases in food prices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0921-8009 ISBN Medium
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 5002
Permanent link to this record
 

 
Author Schmitz, C.; Kreidenweis, U.; Lotze-Campen, H.; Popp, A.; Krause, M.; Dietrich, J.P.; Müller, C.
Title Agricultural trade and tropical deforestation: interactions and related policy options Type Journal Article
Year 2014 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change
Volume 15 Issue 8 Pages 1757-1772
Keywords Land-use change; Trade liberalisation; Tropical deforestation; Forest; protection; Agricultural productivity growth; land-use; brazilian amazon; co2 concentrations; carbon emissions; conservation; climate; mitigation; forests; impact; growth; Environmental Sciences & Ecology
Abstract The extensive clearing of tropical forests throughout past decades has been partly assigned to increased trade in agricultural goods. Since further trade liberalisation can be expected, remaining rainforests are likely to face additional threats with negative implications for climate mitigation and the local environment. We apply a spatially explicit economic land-use model coupled to a biophysical vegetation model to examine linkages and associated policies between trade and tropical deforestation in the future. Results indicate that further trade liberalisation leads to an expansion of deforestation in Amazonia due to comparative advantages of agriculture in South America. Globally, between 30 and 60 million ha (5-10 %) of tropical rainforests would be cleared additionally, leading to 20-40 Gt additional emissions by 2050. By applying different forest protection policies, those values could be reduced substantially. Most effective would be the inclusion of avoided deforestation into a global emissions trading scheme. Carbon prices corresponding to the concentration target of 550 ppm would prevent deforestation after 2020. Investing in agricultural productivity reduces pressure on tropical forests without the necessity of direct protection. In general, additional trade-induced demand from developed and emerging countries should be compensated by international efforts to protect natural resources in tropical regions.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1436-3798 1436-378x ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4810
Permanent link to this record