|   | 
Details
   web
Records
Author Schönhart, M.; Schauppenlehner, T.; Kuttner, M.; Kirchner, M.; Schmid, E.
Title (up) Climate change impacts on farm production, landscape appearance, and the environment: Policy scenario results from an integrated field-farm-landscape model in Austria Type Journal Article
Year 2016 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 145 Issue Pages 39-50
Keywords Integrated land use modeling; Climate change impacts; Mitigation; Adaptation; Field-farm-landscape; Environment; agricultural landscapes; land-use; netherlands; adaptation; indicators; management; responses
Abstract Climate change is among the major drivers of agricultural land use change and demands autonomous farm adaptation as well as public mitigation and adaptation policies. In this article, we present an integrated land use model (ILM) mainly combining a bio-physical model and a bio-economic farm model at field, farm and landscape levels. The ILM is applied to a cropland dominated landscape in Austria to analyze impacts of climate change and mitigation and adaptation policy scenarios on farm production as well as on the abiotic environment and biotic environment. Changes in aggregated total farm gross margins from three climate change scenarios for 2040 range between + 1% and + 5% without policy intervention” and compared to a reference situation under the current climate. Changes in aggregated gross margins are even higher if adaptation policies are in place. However, increasing productivity from climate change leads to deteriorating environmental conditions such as declining plant species richness and landscape appearance. It has to be balanced by mitigation and adaptation policies taking into account effects from the considerable spatial heterogeneity such as revealed by the ILM. (C) 2016 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4767
Permanent link to this record
 

 
Author Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; Eisner, S.; Fekete, B.M.; Folberth, C.; Foster, I.; Gosling, S.N.; Haddeland, I.; Khabarov, N.; Ludwig, F.; Masaki, Y.; Olin, S.; Rosenzweig, C.; Ruane, A.C.; Satoh, Y.; Schmid, E.; Stacke, T.; Tang, Q.; Wisser, D.
Title (up) Constraints and potentials of future irrigation water availability on agricultural production under climate change Type Journal Article
Year 2013 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.
Volume 111 Issue 9 Pages 3239-3244
Keywords Agricultural Irrigation/economics/*methods; Agriculture/economics/*methods; Carbon Dioxide/analysis; *Climate Change; Computer Simulation; Forecasting; *Models, Theoretical; Water Supply/*statistics & numerical data; adaptation; agriculture; hydrology; uncertainty
Abstract We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400-1,400 Pcal (8-24% of present-day total) when CO2 fertilization effects are accounted for or 1,400-2,600 Pcal (24-43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20-60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600-2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 1091-6490 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4790
Permanent link to this record
 

 
Author Schönhart, M.; Schmid, E.; F., S.
Title (up) Das Mostviertel – die Fallstudie im Projekt MACSUR TradeM (The Mostviertel Region – the Austrian Regional Pilot Study in MACSUR – TradeM) Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords TradeM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference TradeM Stakeholder Workshop Vienna, 2014-03-24 to 2014-03-24
Notes Approved no
Call Number MA @ admin @ Serial 2810
Permanent link to this record
 

 
Author Havlik, P.; Leclere, D.; Valin, H.; Herrero, M.; Schmid, E.; Obersteiner, M.
Title (up) Effects of climate change on feed availability and the implications for the livestock sector Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Global mean surface temperature is projected to rise by 0.4-2.6°C until 2050, and the contrast in precipitations between wet and dry regions and wet and dry seasons will also increase according to the IPCC 5th Assessment Report (2013). The climate change will impact livestock in many ways going from heat stress through livestock diseases to feed quality and availability (Thornton et al., 2009). Recently, projected climate change impacts on crop and grassland productivity became available with high spatial resolution at global scale through the AgMIP and ISI-MIP projects. The objective of this paper is to investigate how climate change impacts on crops and grassland will influence livestock production globally and its distribution across regions. This analysis is carried out using the global partial equilibrium agricultural and forestry sector model GLOBIOM (Havlík et al., 2013). The model represents agricultural production at a spatial resolution going down to 5 x 5 minutes of arc. Crop and grassland productivities are estimated by means of biophysical process based models (EPIC and CENTURY) at this resolution for current and future climate. Livestock representation follows a simplified version of the Seré and Steinfeld (1996) production system classification. This approach recognizes differences in feed base and productivities between grazing and mixed crop-livestock production systems across different agro-ecological zones (arid, humid, temperate/highlands). Our study highlights that the differential impacts of climate change on crop and grassland productivity will influence the relative competitiveness of different livestock production systems. Maintaining livestock production in some regions will depend on their capacity to adapt. Institutional and physical infrastructure will be needed to facilitate these transformations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5076
Permanent link to this record
 

 
Author Kirchner, M.; Schönhart, M.; Mitter, H.; Schmid, E.
Title (up) How does climate change adaptation impact GHG emissions – the case of Austrian Agriculture Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords TradeM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Lebensmittelversorgung, Lebensmittelsicherheit und Ernährungssouveränität Food security, safety and sovereignty, 24. Jahrestagung der Österreichischen Gesellschaft für Agrarökonomie, Wien, 2014-09-25 to 2014-09-26
Notes Approved no
Call Number MA @ admin @ Serial 2541
Permanent link to this record