|   | 
Details
   web
Records
Author Mitter, H.; Schmid, E.; Schneider, U.A.
Title Modelling impacts of drought and adaptation scenarios on crop production in Austria (Modellierung von Auswirkungen verschiedener Dürre- und Anpassungsszenarien auf die agrarische Pflanzenproduktion in Österreich) Type Conference Article
Year 2014 Publication Jahrbuch der ÖGA Abbreviated Journal
Volume 24 Issue Pages 223-234
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium (up)
Area Expedition Conference 24. Jahrestagung der Österreichischen Gesellschaft für Agrarökonomie, 2014-09-25 to 2014-09-26, Vienna
Notes TradeM Approved no
Call Number MA @ admin @ Serial 5026
Permanent link to this record
 

 
Author Mitter, H.; Sinabell, F.; Schmid, E.
Title Impacts of climate and policy change on Austrian protein crop supply balances Type Conference Article
Year 2015 Publication Jahrbuch der ÖGA Abbreviated Journal
Volume 23 Issue Pages 131-140
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium (up)
Area Expedition Conference 23. ÖGA Jahrestagung gemeinsam mit der 41. SGA-Jahrestagung “Grenzen der Qualitätsstrategie im Agrarsektor”, 2013-09-12 to 2013-09-14, Zürich
Notes TradeM Approved no
Call Number MA @ admin @ Serial 5030
Permanent link to this record
 

 
Author Schmid, E.
Title Integrated land use modelling — a course for doctoral students Type Report
Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 10 Issue Pages T4.1-4.2-XC4.3-4.4-D
Keywords TradeM
Abstract The course on “Integrated land use modelling” took place at BOKU Vienna between 24. – 28. April 2017. It was a five-days course capturing many aspects in quantitative integrated land use modelling using GAMS (see course outline). 10 students have participated the course coming from several countries. Students finishing the course have received 3 ECTS points. The course was offered by BOKU and the Doctoral Certificate Program in Agricultural Economics (https://www.agraroekonomik.de/index.html ).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium (up)
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 5036
Permanent link to this record
 

 
Author Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N.; Neumann, K.; Piontek, F.; Pugh, T.A.; Schmid, E.; Stehfest, E.; Yang, H.; Jones, J.W.
Title Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison Type Journal Article
Year 2014 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.
Volume 111 Issue 9 Pages 3268-3273
Keywords Agriculture/*methods/statistics & numerical data; *Climate Change; Computer Simulation; Crops, Agricultural/*growth & development; Forecasting; Geography; *Models, Theoretical; Nitrogen/*analysis; Risk Assessment; Temperature; AgMIP; Isi-mip; agriculture; climate impacts; food security
Abstract Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1091-6490 (Electronic) 0027-8424 (Linking) ISBN Medium (up) Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4801
Permanent link to this record
 

 
Author Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; Eisner, S.; Fekete, B.M.; Folberth, C.; Foster, I.; Gosling, S.N.; Haddeland, I.; Khabarov, N.; Ludwig, F.; Masaki, Y.; Olin, S.; Rosenzweig, C.; Ruane, A.C.; Satoh, Y.; Schmid, E.; Stacke, T.; Tang, Q.; Wisser, D.
Title Constraints and potentials of future irrigation water availability on agricultural production under climate change Type Journal Article
Year 2013 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.
Volume 111 Issue 9 Pages 3239-3244
Keywords Agricultural Irrigation/economics/*methods; Agriculture/economics/*methods; Carbon Dioxide/analysis; *Climate Change; Computer Simulation; Forecasting; *Models, Theoretical; Water Supply/*statistics & numerical data; adaptation; agriculture; hydrology; uncertainty
Abstract We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400-1,400 Pcal (8-24% of present-day total) when CO2 fertilization effects are accounted for or 1,400-2,600 Pcal (24-43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20-60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600-2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 1091-6490 ISBN Medium (up) Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4790
Permanent link to this record