|   | 
Details
   web
Records
Author Sinabell, F.; Schönhart, M.; Schmid, E.
Title Austrian Agriculture 2010-2050. Quantitative Effects of Climate Change Mitigation Measures. An analysis of the scenarios WEM, WAM, WAM+ and a sensitivity analysis of scenario WEM Type Report
Year 2015 Publication Studie des Österreichischen Instituts für Wirtschaftsforschung im Auftrag des Umweltbundesamts Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up)
Address
Corporate Author Thesis
Publisher Place of Publication Vienna, Austria Editor
Language Summary Language Original Title
Series Editor Österreichisches Institut für Wirtschaftsforschung Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes TradeM Approved no
Call Number MA @ admin @ Serial 5017
Permanent link to this record
 

 
Author Mitter, H.; Schmid, E.; Schneider, U.A.
Title Modelling impacts of drought and adaptation scenarios on crop production in Austria (Modellierung von Auswirkungen verschiedener Dürre- und Anpassungsszenarien auf die agrarische Pflanzenproduktion in Österreich) Type Conference Article
Year 2014 Publication Jahrbuch der ÖGA Abbreviated Journal
Volume 24 Issue Pages 223-234
Keywords
Abstract (up)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 24. Jahrestagung der Österreichischen Gesellschaft für Agrarökonomie, 2014-09-25 to 2014-09-26, Vienna
Notes TradeM Approved no
Call Number MA @ admin @ Serial 5026
Permanent link to this record
 

 
Author Mitter, H.; Sinabell, F.; Schmid, E.
Title Impacts of climate and policy change on Austrian protein crop supply balances Type Conference Article
Year 2015 Publication Jahrbuch der ÖGA Abbreviated Journal
Volume 23 Issue Pages 131-140
Keywords
Abstract (up)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 23. ÖGA Jahrestagung gemeinsam mit der 41. SGA-Jahrestagung “Grenzen der Qualitätsstrategie im Agrarsektor”, 2013-09-12 to 2013-09-14, Zürich
Notes TradeM Approved no
Call Number MA @ admin @ Serial 5030
Permanent link to this record
 

 
Author Nelson, G.C.; Valin, H.; Sands, R.D.; Havlík, P.; Ahammad, H.; Deryng, D.; Elliott, J.; Fujimori, S.; Hasegawa, T.; Heyhoe, E.; Kyle, P.; Von Lampe, M.; Lotze-Campen, H.; Mason d’Croz, D.; van Meijl, H.; van der Mensbrugghe, D.; Müller, C.; Popp, A.; Robertson, R.; Robinson, S.; Schmid, E.; Schmitz, C.; Tabeau, A.; Willenbockel, D.
Title Climate change effects on agriculture: economic responses to biophysical shocks Type Journal Article
Year 2014 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.
Volume 111 Issue 9 Pages 3274-3279
Keywords Agriculture/*economics; Carbon Dioxide/analysis; *Climate Change; Commerce/statistics & numerical data; Computer Simulation; Crops, Agricultural/*growth & development; Forecasting; Humans; *Models, Economic; agricultural productivity; climate change adaptation; integrated assessment; model intercomparison
Abstract (up) Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 1091-6490 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4535
Permanent link to this record
 

 
Author Mitter, H.; Heumesser, C.; Schmid, E.
Title Spatial modeling of robust crop production portfolios to assess agricultural vulnerability and adaptation to climate change Type Journal Article
Year 2015 Publication Land Use Policy Abbreviated Journal Land Use Policy
Volume 46 Issue Pages 75-90
Keywords climate change impact; adaptation; agricultural vulnerability; portfolio optimization; agricultural policy; agri-environmental payment; adaptive capacity; change impacts; risk-aversion; land-use; ecosystem services; change scenarios; europe; policy; future; water
Abstract (up) Agricultural vulnerability to climate change is likely to vary considerably between agro-environmental regions. Exemplified on Austrian cropland, we aim at (i) quantifying climate change impacts on agricultural vulnerability which is approximated by the indicators crop yields and gross margins, (ii) developing robust crop production portfolios for adaptation, and (iii) analyzing the effect of agricultural policies and risk aversion on the choice of crop production portfolios. We have employed a spatially explicit, integrated framework to assess agricultural vulnerability and adaptation. It combines a statistical climate change model for Austria and the period 2010-2040, a crop rotation model, the bio-physical process model EPIC (Environmental Policy Integrated Climate), and a portfolio optimization model. We find that under climate change, crop production portfolios include higher shares of intensive crop management practices, increasing average crop yields by 2-15% and expected gross margins by 3-18%, respectively. The results depend on the choice of adaptation measures and on the level of risk aversion and vary by region. In the semi-arid eastern parts of Austria, average dry matter crop yields are lower but gross margins are higher than in western Austria due to bio-physical and agronomic heterogeneities. An abolishment of decoupled farm payments and a threefold increase in agri-environmental premiums would reduce nitrogen inputs by 23-33%, but also crop yields and gross margins by 18-37%, on average. From a policy perspective, a twofold increase in agri-environmental premiums could effectively reduce the trade-offs between crop production and environmental impacts. (C) 2015 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-8377 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4675
Permanent link to this record