toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Jabloun, M.; Li, X.; Olesen, E.; Schelde, K.; Tao, F. openurl 
  Title RDAISY: a comprehensive modelling framework for automated calibration, sensitivity and uncertainty analysis of the DAISY model Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords CropM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR CropM International Symposium and Workshop: Modelling climate change impacts on crop production for food security, Oslo, Norway, 2014-02-10 to 2014-02-12  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2502  
Permanent link to this record
 

 
Author (up) Jabloun, M.; Schelde, K.; Tao, F.; Olesen, J.E. url  doi
openurl 
  Title Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 62 Issue Pages 55-64  
  Keywords nitrogen; leaching; organic farming; wheat; barley; climate-change; catch crops; nitrogen mineralization; winter-wheat; arable crop; european agriculture; farming systems; spring barley; cover crops; soil  
  Abstract The effect of variation in seasonal temperature and precipitation on soil water nitrate (NO3-N) concentration and leaching from winter and spring cereals cropping systems was investigated over three consecutive four-year crop rotation cycles from 1997 to 2008 in an organic farming crop rotation experiment in Denmark. Three experimental sites, varying in climate and soil type from coarse sand to sandy loam, were investigated. The experiment included experimental treatments with different rotations, manure rate and cover crop, and soil nitrate concentrations was monitored using suction cups. The effects of climate, soil and management were examined in a linear mixed model, and only parameters with significant effect (P < 0.05) were included in the final model. The model explained 61% and 47% of the variation in the square root transform of flow-weighted annual NO3-N concentration for winter and spring cereals, respectively, and 68% and 77% of the variation in the square root transform of annual NO3-N leaching for winter and spring cereals, respectively. Nitrate concentration and leaching were shown to be site specific and driven by climatic factors and crop management. There were significant effects on annual N concentration and NO3-N leaching of location, rotation, previous crop and crop cover during autumn and winter. The relative effects of temperature and precipitation differed between seasons and cropping systems. A sensitivity analysis revealed that the predicted N concentration and leaching increased with increases in temperature and precipitation. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4562  
Permanent link to this record
 

 
Author (up) Olesen, J.E.; Jabloun, M.; Schelde, K. url  openurl
  Title Reconciling estimates of climate change effects on nitrate leaching from agricultural crops Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Nitrate leaching from agricultural systems constitutes a severe environmental effect in regions with valuable groundwater resources and vulnerable aquatic ecosystems. Therefore cropping systems should in many parts of Europe reduce the amount of nitrate leached from the root zone. Since soil nitrogen transformation and loss processes are highly influenced by climate, including temperature and precipitation, estimates of climate change effects on nitrate leaching is in high demand for evaluating future groundwater and surface water protection policies. Modelling studies using both the FASSET and Daisy models for cereal crops as well as arable crop rotations in Denmark have shown increased nitrate leaching under projected climate change. Sensitivity analyses using these models have shown a higher response to changes in temperature than to precipitation, although in particular precipitation responses differ between soil types. Simulations for crop rotations show that current catch crop management may not be sufficient to maintain low nitrate leaching levels in future. These effects of temperature and precipitation as well as crop management are confirmed in an empirical analysis of nitrate leaching from a long-term cropping system experiment in Denmark. The main uncertainties on climate change effects on future nitrate leaching appears to be related to effects of climate change on soil organic matter and thus on the amount of soil total N available for mineralization as well as the effects of enhanced atmospheric CO2 concentration on crop residue quality and N mineralization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5118  
Permanent link to this record
 

 
Author (up) Sharif, B.; Mankowski, D.; Kersebaum, K.C.; Trnka, M.; Schelde, K.; Olsesen, J.E. url  openurl
  Title Empirical analysis on crop-weather relationships Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-C2.5  
  Keywords  
  Abstract There have been several studies, where process-based crop models are developed, used and compared in order to project crop production and corresponding model uncertainties under climate change. Despite many advances in this field, there are some correlations between climate variables and crop growth, such as pest and diseases, that is often absent in process-based models. Such relationships can be simulated using empirical models. In this study, several statistical techniques were applied on winter oilseed rape data collected in some European countries. The empirical models were then used to predict yield of winter oilseed rape in the field experiments during more than 20 years, up to 2013. Results suggest that newly developed regression techniques such as shrinkage methods work well both in yield projections and finding the influential climatic variables. Many of regression techniques agree in terms of yield prediction; however, choice of significant climate variables is rather sensitive to the choice of regression technique. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2092  
Permanent link to this record
 

 
Author (up) Sharif, B.; Olesen, J.E.; Schelde, K. url  openurl
  Title Statistical learning approach for modelling the effects of climate change on oilseed rape yield Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Statistical learning is a fairly new term referring to a set of supervised and unsupervised modelling and prediction techniques. It is based on traditional statistics but has been highly enhanced inspired by developments in machine learning and data mining. The main focus of statistical learning is to estimate the functions that quantify relations between several parameters and observed responses. These functions are further used for prediction, inference or a combination of both. For a particular case of quantitative responses, regularization techniques in regression are developed to overcome the weaknesses of ordinary least square (OLS) regression in prediction. These new shrinkage methods outperform OLS for prediction, especially in large datasets. In this study, a large dataset of field experiments on winter oilseed rape in Denmark for 22 years (1992 to 2013) was collected. Biweekly climatic data along with sowing date, harvest date, soil type and previous crop are considered as the explanatory variables. Yield of winter oilseed rape is considered as response variable. LASSO and Elastic Nets are the regularization techniques used to estimate the functions. Hold-one-out cross validation method for testing the prediction power reveals that these techniques are much useful in both prediction and inference. Since these techniques are included in recent versions of some software packages (e.g. R), they can be easily implemented by users at any level. The estimated function (model) is further used to predict the oilseed rape yield responses to climate change for several scenarios using representative weather data produced by a weather generator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5129  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: