toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Sanna, M.; Bellocchi, G.; Fumagalli, M.; Acutis, M. openurl 
  Title Interrelationship and optimal choice of indicators to evaluate performance of agrometeorological models Type Manuscript
  Year Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords CropM; LiveM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2790  
Permanent link to this record
 

 
Author (down) Sanna, M.; Bellocchi, G.; Fumagalli, M.; Acutis, M. url  doi
openurl 
  Title A new method for analysing the interrelationship between performance indicators with an application to agrometeorological models Type Journal Article
  Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 73 Issue Pages 286-304  
  Keywords model evaluation; performance indicators; stable correlation; solar-radiation; simulation-model; environmental-models; statistical-methods; crop nitrogen; validation; rice; uncertainty; calibration; software  
  Abstract The use of a variety of metrics is advocated to assess model performance but correlated metrics may convey the same information, thus leading to redundancy. Starting from this assumption, a method was developed for selecting, from among a collection of performance indicators, one or more subsets providing the same information as the entire set. The method, based on the definition of “stable correlation”, was applied to 23 performance indicators of agrometeorological models, calculated on large sets of simulated and observed data of four agronomic and meteorological variables: above-ground biomass, leaf area index, hourly air relative humidity and daily solar radiation. Two subsets were determined: {Squared Bias, Root Mean Squared Relative Error, Coefficient of Determination, Pattern Index, Modified Modelling Efficiency}, {Persistence Model Efficiency, Root Mean Squared Relative Error, Coefficient of Determination, Pattern Index}. The method needs corroboration but is statistically founded and can support the implementation of standardized evaluation tools. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM LiveM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4503  
Permanent link to this record
 

 
Author (down) Sanna, M.; Acutis, M.; Bellocchi, G. url  openurl
  Title Interrelationship between evaluation metrics to assess agro-ecological models Type Report
  Year 2014 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 3 Issue Pages Sp3-5  
  Keywords  
  Abstract When evaluating the performances of simulation models, the perception of the quality of the outputs may depend on the statistics used to compare simulated and observed data. In order to have a comprehensive understanding of model performance, the use of a variety of metrics is generally advocated. However, since they may be correlated, the use of two or more metrics may convey the same information, leading to redundancy. This study intends to investigate the interrelationship between evaluation metrics, with the aim of identifying the most useful set of indicators, for assessing simulation performance. Our focus is on agro-ecological modelling. Twenty-three performance indicators were selected to compare simulated and observed data of four agronomic and meteorological variables: above-ground biomass, leaf area index, hourly air relative humidity and daily solar radiation. Indicators were calculated on large data sets, collected to effectively apply correlation analysis techniques. For each variable, the interrelationship between each pair of indicators was evaluated, by computing the Spearman’s rank correlation coefficient. A definition of “stable correlation” was proposed, based on the test of heterogeneity, allowing to assess whether two or more correlation coefficients are equal. An optimal subset of indicators was identified, striking a balance between number of indicators, amount of provided information and information redundancy. They are: Index of Agreement, Squared Bias, Root Mean Squared Relative Error, Pattern Index, Persistence Model Efficiency and Spearman’s Correlation Coefficient. The present study was carried out in the context of CropM-LiveM cross-cutting activities of MACSUR knowledge hub. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2222  
Permanent link to this record
 

 
Author (down) Sanna, M.; Acutis, M.; Bellocchi, G. url  openurl
  Title Interrelationship between evaluation metrics to assess agro-ecological models Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract When evaluating the performances of simulation models, the perception of the quality of the outputs may depend on the statistics used to compare simulated and observed data. In order to have a comprehensive understanding of model performance, the use of a variety of metrics is generally advocated. However, since they may be correlated, the use of two or more metrics may convey the same information, leading to redundancy. This study intends to investigate the interrelationship between evaluation metrics, with the aim of identifying the most useful set of indicators, for assessing simulation performance. Our focus is on agro-ecological modelling. Twenty-three performance indicators were selected to compare simulated and observed data of four agronomic and meteorological variables: above-ground biomass, leaf area index, hourly air relative humidity and daily solar radiation. Indicators were calculated on large data sets, collected to effectively apply correlation analysis techniques. For each variable, the interrelationship between each pair of indicators was evaluated, by computing the Spearman’s rank correlation coefficient. A definition of “stable correlation” was proposed, based on the test of heterogeneity, allowing to assess whether two or more correlation coefficients are equal. An optimal subset of indicators was identified, striking a balance between number of indicators, amount of provided information and information redundancy. They are: Index of Agreement, Squared Bias, Root Mean Squared Relative Error, Pattern Index, Persistence Model Efficiency and Spearman’s Correlation Coefficient. The present study was carried out in the context of CropM-LiveM cross-cutting activities of MACSUR knowledge hub.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5092  
Permanent link to this record
 

 
Author (down) Sándor, R.; Barcza, Z.; Acutis, M.; Doro, L.; Hidy, D.; Köchy, M.; Minet, J.; Lellei-Kovács, E.; Ma, S.; Perego, A.; Rolinski, S.; Ruget, F.; Sanna, M.; Seddaiu, G.; Wu, L.; Bellocchi, G. url  doi
openurl 
  Title Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble performance Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume Issue Pages  
  Keywords Biomass; Grasslands; Modelling; Multi-model ensemble; Soil processes  
  Abstract • We simulate biomass, soil water content (SWC) and temperature (ST) in grasslands. • We compare nine models to the multi-model median (MMM) at nine sites. • With model calibration, we obtain satisfactory estimates of ST, less of SWC and biomass. • We observe discrepancies across models in the simulation of grassland processes. • We improve performance with multi-model approach. This study presents results from a major grassland model intercomparison exercise, and highlights the main challenges faced in the implementation of a multi-model ensemble prediction system in grasslands. Nine, independently developed simulation models linking climate, soil, vegetation and management to grassland biogeochemical cycles and production were compared in a simulation of soil water content (SWC) and soil temperature (ST) in the topsoil, and of biomass production. The results were assessed against SWC and ST data from five observational grassland sites representing a range of conditions – Grillenburg in Germany, Laqueuille in France with both extensive and intensive management, Monte Bondone in Italy and Oensingen in Switzerland – and against yield measurements from the same sites and other experimental grassland sites in Europe and Israel. We present a comparison of model estimates from individual models to the multi-model ensemble (represented by multi-model median: MMM). With calibration (seven out of nine models), the performances were acceptable for weekly-aggregated ST (R² > 0.7 with individual models and >0.8–0.9 with MMM), but less satisfactory with SWC (R² < 0.6 with individual models and < ∼ 0.5 with MMM) and biomass (R² < ∼0.3 with both individual models and MMM). With individual models, maximum biases of about −5 °C for ST, −0.3 m3 m−3 for SWC and 360 g DM m−2 for yield, as well as negative modelling efficiencies and some high relative root mean square errors indicate low model performance, especially for biomass. We also found substantial discrepancies across different models, indicating considerable uncertainties regarding the simulation of grassland processes. The multi-model approach allowed for improved performance, but further progress is strongly needed in the way models represent processes in managed grassland systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium  
  Area LiveM Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 4768  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: