|   | 
Details
   web
Records
Author Topp, K.; Eory, V.; Bannink, A.; Bartley, D.J.; Blanco-Penedo, I.; Cortignani, R.; Del Prado, A.; Dono, G.; Faverdin, P.; Graux, A.-I.; Hutchings, N.; Lauwers, L.; Özkan Gülzari, Ş.; Rolinski, S.; Ruiz Ramos, M.; Sandars, D.L.; Sándor, R.; Schoenhart, M.; Seddaiu, G.; van Middelkoop, J.; Weindl, I.; Kipling, R.P.
Title Modelling climate change adaptation in European agriculture: Definitions and Current Modelling Type Report
Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 10 Issue Pages L2.3.2-D
Keywords
Abstract Confidential content, in preparation for a peer-reviewed publication.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes LiveM Approved no
Call Number MA @ admin @ Serial 4959
Permanent link to this record
 

 
Author Hutchings, N.J.; Özkan Gülzari, Ş.; de Haan, M.; Sandars, D.
Title How do farm models compare when estimating greenhouse gas emissions from dairy cattle production Type Journal Article
Year 2018 Publication Animal Abbreviated Journal Animal
Volume 12 Issue 10 Pages 2171-2180
Keywords dairy cattle; farm-scale; model; greenhouse gas; Future Climate Scenarios; Systems-Analysis; Milk-Production; Crop; Production; Mitigation; Intensity; Impacts
Abstract The European Union Effort Sharing Regulation (ESR) will require a 30% reduction in greenhouse gas (GHG) emissions by 2030 compared with 2005 from the sectors not included in the European Emissions Trading Scheme, including agriculture. This will require the estimation of current and future emissions from agriculture, including dairy cattle production systems. Using a farm-scale model as part of a Tier 3 method for farm to national scales provides a more holistic and informative approach than IPCC (2006) Tier 2 but requires independent quality control. Comparing the results of using models to simulate a range of scenarios that explore an appropriate range of biophysical and management situations can support this process by providing a framework for placing model results in context. To assess the variation between models and the process of understanding differences, estimates of GHG emissions from four farm-scale models (DailyWise, FarmAC, HolosNor and SFARMMOD) were calculated for eight dairy farming scenarios within a factorial design consisting of two climates (cool/dry and warm/wet) x two soil types (sandy and clayey) x two feeding systems (grass only and grass/maize). The milk yield per cow, follower cow ratio, manure management system, nitrogen (N) fertilisation and land area were standardised for all scenarios in order to associate the differences in the results with the model structure and function. Potential yield and application of available N in fertiliser and manure were specified separately for grass and maize. Significant differences between models were found in GHG emissions at the farm-scale and for most contributory sources, although there was no difference in the ranking of source magnitudes. The farm-scale GHG emissions, averaged over the four models, was 10.6 t carbon dioxide equivalents (CO(2)e)/ha per year, with a range of 1.9 t CO(2)e/ha per year. Even though key production characteristics were specified in the scenarios, there were still significant differences between models in the annual milk production per ha and the amounts of N fertiliser and concentrate feed imported. This was because the models differed in their description of biophysical responses and feedback mechanisms, and in the extent to which management functions were internalised. We conclude that comparing the results of different farm-scale models when applied to a range of scenarios would build confidence in their use in achieving ESR targets, justifying further investment in the development of a wider range of scenarios and software tools.
Address 2019-01-07
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1751-7311 ISBN Medium
Area Expedition Conference (up)
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5212
Permanent link to this record
 

 
Author Del Prado, A.; van den Pol-van Dasselaar, A.; Chadwick, D.; Misselbrook, T.; Sandars, D.L.; Audsley, E.; Mosquera-Losada, M.R.
Title Synergies between mitigation and adaption to climate change in grassland-based farming systems Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords LiveM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up) 25th EGF General Meeting on “EGF at 50: The Future of European Grasslands”. - Grassland Science in Europe 19. Aberystwyth, Wales : EGF, 2014 - p. 61 - 74., 2014-09-07 to 2014-09-11
Notes Approved no
Call Number MA @ admin @ Serial 2386
Permanent link to this record
 

 
Author Sandars, D.; Audsley, E.; Holman, I.
Title Predicting the optimum land use at any location for any future scenario (CLIMSAVE/IMPRESSIONS) Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Given any socio-, techno-, economic scenario and location specific soil and climate scenario, the farm model predicts the most profitable land use at that location.  This model is encapsulated within a Europe-wide interactive interface, to allow adaptation and mitigation options to be explored by any user.  With 5 climate models and 19 parameters, the user can study the sensitivity of the results to the chosen scenario settings.  A scenario’s land use can be classified as intensive arable, intensive grassland, extensive grassland, forestry, or abandoned depending on potential profitability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up) FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5113
Permanent link to this record
 

 
Author Sandars, D.
Title Understanding Europe’s future ability to feed itself within an uncertain climate change and socio economic scenario space Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-54
Keywords
Abstract Europe’s ability to feed its population depends on the balance of agricultural productivity (yields and land suitability) and demand which are affected by future climate and socio-economic change (arising from changing food demand; prices; technology change etc).  Land use under 2050 climate change and socio-economic scenarios can be rapidly and systematically quantified with a modelling system that has been developed from meta-models of optimal cropping and crop and forest yields derived from the outputs of the previously developed complex models (Audsley et al; 2015). Profitability of each possible land use is modelled for every soil in every grid across the EU. Land use in a grid is then allocated based on profit thresholds set for intensive agriculture extensive agriculture, managed forest and finally unmanaged forest or unmanaged land.  The European demand for food as a function of population, imports, food preferences and bioenergy, is a production constraint, as is irrigation water available.   The model iterates until demand is satisfied (or cannot be met at any price).  Results are presented as contour plots of key variables. For example, given a 40% increase in population from the baseline socio-economic scenario, adapting by increasing crop yields by 40% will leave a 38% probability that the 2050 future climate will be such that we cannot feed ourselves – considering “all” the possible climate scenarios. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up) MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2169
Permanent link to this record