|   | 
Details
   web
Records
Author Gabaldón-Leal, C.; Ruiz-Ramos, M.; de la Rosa, R.; León, L.; Belaj, A.; Rodríguez, A.; Santos, C.; Lorite, I.J.
Title Impact of changes in mean and extreme temperatures caused by climate change on olive flowering in southern Spain: IMPACT OF CLIMATE CHANGE ON OLIVE FLOWERING IN SOUTHERN SPAIN Type Journal Article
Year 2017 Publication International Journal of Climatology Abbreviated Journal Int. J. Climatol.
Volume Issue Pages 867
Keywords
Abstract Due to the severe increase projected in future temperatures and the great economic and social importance of olive growing for vast agricultural areas in the Mediterranean Basin, accurate climate change impact assessment on olive orchards is required. The aim of this study is to assess the flowering date and the impact of mean and extreme temperature events on olive flowering in southern Spain under baseline and future climate conditions. To that end, experimental data were obtained from ten olive genotypes: six well-known olive cultivars in the region, one cultivar, ‘Chiquitita’, obtained via conventional breeding, and three wild olives from the Canary Islands. A site-specific model calibration was conducted resulting in satisfactory performance with an average error of 2 days for flowering date estimation under baseline and future climate conditions, and a RMSE equal to 5.5 days in the validation process. The outputs from 12 regional climate models from the ENSEMBLES European project with a bias correction in temperature and precipitation were used. Results showed an advance in the olive flowering dates of about 17 days at the end of the 21st century compared with the baseline period (1981–2010), and an increase in the frequency of extreme events around the flowering period. A spatial analysis of results identified the areas in southern Spain that are most vulnerable to climate change impact caused by the lack of chilling hours accumulation (areas located on the Atlantic coast and the south-eastern coast) and by the occurrence of high temperatures during the flowering period (areas located in the north and north-eastern areas of the Andalusian region).
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0899-8418 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4994
Permanent link to this record
 

 
Author Leolini, L.; Moriondo, M.; De Cortazar-Atauri, I.; Ruiz-Ramos, M.; Nendel, C.; Roggero, P.P.; Spanna, F.; Ramos, M.C.; Costafreda-Aumedes, S.; Ferrise, R.; Bindi, M.
Title Modelling different cropping systems Type Report
Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 10 Issue Pages C1.4-D
Keywords
Abstract Grapevine is a worldwide valuable crop characterized by a high economic importance for the production of high quality wines. However, the impact of climate change on the narrow climate niches in which grapevine is currently cultivated constitute a great risk for future suitability of grapevine. In this context, grape simulation models are considered promising tools for their contribution to investigate plant behavior in different environments. In this study, six models developed for simulating grapevine growth and development were tested by focusing on their performances in simulating main grapevine processes under two calibration levels: minimum and full calibration. This would help to evaluate major limitations/strength points of these models, especially in the view of their application to climate change impact and adaptation assessments. Preliminary results from two models (GrapeModel and STICS) showed contrasting abilities in reproducing the observed data depending on the site, the year and the target variable considered. These results suggest that a limited dataset for model calibration would lead to poor simulation outputs. However, a more complete interpretation and detailed analysis of the results will be provided when considering the other models simulations.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 5033
Permanent link to this record
 

 
Author Hoffmann, M.P.; Haakana, M.; Asseng, S.; Höhn, J.G.; Palosuo, T.; Ruiz-Ramos, M.; Fronzek, S.; Ewert, F.; Gaiser, T.; Kassie, B.T.; Paff, K.; Rezaei, E.E.; Rodríguez, A.; Semenov, M.; Srivastava, A.K.; Stratonovitch, P.; Tao, F.; Chen, Y.; Rötter, R.P.
Title How does inter-annual variability of attainable yield affect the magnitude of yield gaps for wheat and maize? An analysis at ten sites Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 159 Issue Pages 199-208
Keywords
Abstract Highlights • The larger simulated attainable yield for a specific crop season, the larger the yield gap. • Average size of the yield gap is not affected by the inter-annual variability of attainable yield. • Technology levels (resource input and accessibility) determine average yield gap. • To reduce yield gaps in rainfed environments, farmers need to improve season-specific crop management. Abstract Provision of food security in the face of increasing global food demand requires narrowing of the gap between actual farmer’s yield and maximum attainable yield. So far, assessments of yield gaps have focused on average yield over 5–10 years, but yield gaps can vary substantially between crop seasons. In this study we hypothesized that climate-induced inter-annual yield variability and associated risk is a major barrier for farmers to invest, i.e. increase inputs to narrow the yield gap. We evaluated the importance of inter-annual attainable yield variability for the magnitude of the yield gap by utilizing data for wheat and maize at ten sites representing some major food production systems and a large range of climate and soil conditions across the world. Yield gaps were derived from the difference of simulated attainable yields and regional recorded farmer yields for 1981 to 2010. The size of the yield gap did not correlate with the amplitude of attainable yield variability at a site, but was rather associated with the level of available resources such as labor, fertilizer and plant protection inputs. For the sites in Africa, recorded yield reached only 20% of the attainable yield, while for European, Asian and North American sites it was 56–84%. Most sites showed that the higher the attainable yield of a specific season the larger was the yield gap. This significant relationship indicated that farmers were not able to take advantage of favorable seasonal weather conditions. To reduce yield gaps in the different environments, reliable seasonal weather forecasts would be required to allow farmers to manage each seasonal potential, i.e. overcoming season-specific yield limitations.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language phase 2+ Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521x ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5185
Permanent link to this record
 

 
Author Gabaldón-Leal, C.; Lorite, I.J.; Mínguez, M.I.; Lizaso, J.I.; Dosio, A.; Sanchez, E.; Ruiz-Ramos, M.
Title Strategies for adapting maize to climate change and extreme temperatures in Andalusia, Spain Type Journal Article
Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 65 Issue Pages 159-173
Keywords climate change; impact; adaptation; maize; crop model; regional climate model; extreme temperature; elevated carbon-dioxide; iberian peninsula; future climate; mediterranean environment; crop productivity; model simulations; pollen viability; european climate; bias correction; change impacts
Abstract Climate projections indicate that rising temperatures will affect summer crops in the southern Iberian Peninsula. The aim of this study was to obtain projections of the impacts of rising temperatures, and of higher frequency of extreme events on irrigated maize, and to evaluate some adaptation strategies. The study was conducted at several locations in Andalusia using the CERES-Maize crop model, previously calibrated/validated with local experimental datasets. The simulated climate consisted of projections from regional climate models from the ENSEMBLES project; these were corrected for daily temperature and precipitation with regard to the E-OBS observational dataset. These bias-corrected projections were used with the CERES-Maize model to generate future impacts. Crop model results showed a decrease in maize yield by the end of the 21st century from 6 to 20%, a decrease of up to 25% in irrigation water requirements, and an increase in irrigation water productivity of up to 22%, due to earlier maturity dates and stomatal closure caused by CO2 increase. When adaptation strategies combining earlier sowing dates and cultivar changes were considered, impacts were compensated, and maize yield increased up to 14%, compared with the baseline period (1981-2010), with similar reductions in crop irrigation water requirements. Effects of extreme maximum temperatures rose to 40% at the end of the 21st century, compared with the baseline. Adaptation resulted in an overall reduction in extreme T-max damages in all locations, with the exception of Granada, where losses were limited to 8%.
Address (up) 2016-06-01
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577x 1616-1572 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4738
Permanent link to this record
 

 
Author Ruiz-Ramos, M.; Rodriguez, A.; Dosio, A.; Goodess, C.M.; Harpham, C.; Minguez, M.I.; Sanchez, E.
Title Comparing correction methods of RCM outputs for improving crop impact projections in the Iberian Peninsula for 21st century Type Journal Article
Year 2016 Publication Climatic Change Abbreviated Journal Clim. Change
Volume 134 Issue 1-2 Pages 283-297
Keywords regional climate model; bias correction; weather generator; circulation model; simulations; temperature; precipitation; ensemble; uncertainty; extremes
Abstract Assessment of climate change impacts on crops in regions of complex orography such as the Iberian Peninsula (IP) requires climate model output which is able to describe accurately the observed climate. The high resolution of output provided by Regional Climate Models (RCMs) is expected to be a suitable tool to describe regional and local climatic features, although their simulation results may still present biases. For these reasons, we compared several post-processing methods to correct or reduce the biases of RCM simulations from the ENSEMBLES project for the IP. The bias-corrected datasets were also evaluated in terms of their applicability and consequences in improving the results of a crop model to simulate maize growth and development at two IP locations, using this crop as a reference for summer cropping systems in the region. The use of bias-corrected climate runs improved crop phenology and yield simulation overall and reduced the inter-model variability and thus the uncertainty. The number of observational stations underlying each reference observational dataset used to correct the bias affected the correction performance. Although no single technique showed to be the best one, some methods proved to be more adequate for small initial biases, while others were useful when initial biases were so large as to prevent data application for impact studies. An initial evaluation of the climate data, the bias correction/reduction method and the consequences for impact assessment would be needed to design the most robust, reduced uncertainty ensemble for a specific combination of location, crop, and crop management.
Address (up) 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-0009 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4805
Permanent link to this record