toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Biewald, A.; Rolinski, S.; Lotze-Campen, H.; Schmitz, C. openurl 
  Title Global valuation of agricultural, virtual blue water trade measured on a local scale Type Conference Article
  Year 2012 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference Conference paper presented at the 10th Annual meeting of the International Water Resource Economics Consortium, Stockholm, Sweden, 2012-08-27 to 2012-08-28  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2323  
Permanent link to this record
 

 
Author Rolinski, S.; Sætnan, E. url  openurl
  Title Uncertainties in climate change prediction and modelling Type Report
  Year 2013 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 1 Issue Pages D-L1.5  
  Keywords  
  Abstract As models become increasingly complex and integrated, uncertainty among model  parameters, variables and processes become critical for evaluating model outcomes and  predictions. A framework for understanding uncertainty in climate modelling has been  developed by the IPCC and EEA which provides a framework for discussion of uncertainty  in models in general. Here we report on a review of this framework along with the results  of a survey of sources of uncertainty in livestock and grassland models. Along with the  identification of key sources of uncertainty in livestock and grassland modelling, the  survey highlighted the need for a development of a common typology for uncertainty.  When collaborating across traditionally separate research fields, or when communicating  with stakeholders, differences in understanding, interpretation or emphasis can cause  confusion. Further work in MACSUR should focus on improving model intercomparison  methods to better understand model uncertainties, and improve availability of high  quality datasets which can reduce model uncertainties. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2259  
Permanent link to this record
 

 
Author Rolinski, S.; Weindl, I.; Heinke, J.; Bodirsky, B.L.; Biewald, A.; Lotze-Campen, H. url  doi
openurl 
  Title Pasture harvest, carbon sequestration and feeding potentials under different grazing intensities Type Journal Article
  Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences  
  Volume 6 Issue 01 Pages 43-45  
  Keywords global dynamic vegetation model; LPJmL; grasslands; livestock production  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4541  
Permanent link to this record
 

 
Author Rolinski, S.; Weindl, I.; Heinke, J.; Bodirsky, B.L.; Biewald, A.; Lotze-Campen, H. url  openurl
  Title Environmental impacts of grassland management and livestock production Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The potential of grasslands to sequester carbon and provide feed for livestock production depends on the one hand on climatic conditions but secondly on management and grazing pressure. Using a global vegetation model considering different management and grazing options, effects of livestock density on primary productivity can be assessed. It is expected that low animal densities enhance productivity whereas increasing grazing pressure may deteriorate grass plants. Thus, the optimal animal density depend on the specific primary production of the pasture and optimal grazing intensity. Using these optimal grass yields, the impacts of livestock production on resource use is assessed by applying the global land use model MAgPIE. This model integrates a detailed representation of the livestock sector and integrates socio-economic regional information with spatially explicit biophysical data. With scenario analysis we analyze the impact of livestock production on future deforestation and land use. Our results indicate that the reduction of animal derived calory demand has a huge potential to spare land for nature and reduce deforestation. On the supply side, feeding efficiency gains can help to decrease demand for land and overall biomass requirements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5078  
Permanent link to this record
 

 
Author Sandor, R.; Ehrhardt, F.; Grace, P.; Recous, S.; Smith, P.; Snow, V.; Soussana, J.-F.; Basso, B.; Bhatia, A.; Brilli, L.; Doltra, J.; Dorich, C.D.; Doro, L.; Fitton, N.; Grant, B.; Harrison, M.T.; Kirschbaum, M.U.F.; Klumpp, K.; Laville, P.; Leonard, J.; Martin, R.; Massad, R.-S.; Moore, A.; Myrgiotis, V.; Pattey, E.; Rolinski, S.; Sharp, J.; Skiba, U.; Smith, W.; Wu, L.; Zhang, Q.; Bellocchi, G. doi  openurl
  Title Ensemble modelling of carbon fluxes in grasslands and croplands Type Journal Article
  Year 2020 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 252 Issue Pages 107791  
  Keywords C fluxes; croplands; grasslands; multi-model ensemble; multi-model; median (mmm); soil organic-carbon; greenhouse-gas emissions; climate-change impacts; crop model; data aggregation; use efficiency; n2o emissions; maize; yield; wheat; productivity  
  Abstract Croplands and grasslands are agricultural systems that contribute to land–atmosphere exchanges of carbon (C). We evaluated and compared gross primary production (GPP), ecosystem respiration (RECO), net ecosystem exchange (NEE) of CO2, and two derived outputs – C use efficiency (CUE=-NEE/GPP) and C emission intensity (IntC= -NEE/Offtake [grazed or harvested biomass]). The outputs came from 23 models (11 crop-specific, eight grassland-specific, and four models covering both systems) at three cropping sites over several rotations with spring and winter cereals, soybean and rapeseed in Canada, France and India, and two temperate permanent grasslands in France and the United Kingdom. The models were run independently over multi-year simulation periods in five stages (S), either blind with no calibration and initialization data (S1), using historical management and climate for initialization (S2), calibrated against plant data (S3), plant and soil data together (S4), or with the addition of C and N fluxes (S5). Here, we provide a framework to address methodological uncertainties and contextualize results. Most of the models overestimated or underestimated the C fluxes observed during the growing seasons (or the whole years for grasslands), with substantial differences between models. For each simulated variable, changes in the multi-model median (MMM) from S1 to S5 was used as a descriptor of the ensemble performance. Overall, the greatest improvements (MMM approaching the mean of observations) were achieved at S3 or higher calibration stages. For instance, grassland GPP MMM was equal to 1632 g C m−2 yr-1 (S5) while the observed mean was equal to 1763 m-2 yr-1 (average for two sites). Nash-Sutcliffe modelling efficiency coefficients indicated that MMM outperformed individual models in 92.3 % of cases. Our study suggests a cautious use of large-scale, multi-model ensembles to estimate C fluxes in agricultural sites if some site-specific plant and soil observations are available for model calibration. The further development of crop/grassland ensemble modelling will hinge upon the interpretation of results in light of the way models represent the processes underlying C fluxes in complex agricultural systems (grassland and crop rotations including fallow periods).  
  Address 2020-06-08  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 5230  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: